Chemistry & engineering of two-dimensional materials for energy-efficient molecular separation

High-performance molecular-selective membranes are expected to play a crucial role in improving the energy-efficiency of separation processes and reducing the industrial carbon emission. Our laboratory is engaged in chemistry and engineering of two-dimensional materials at the angstrom length scale to address challenges in the scalable fabrication of nanoporous membranes separating molecules based on their relative diffusivities through custom-designed nanopores.

In this seminar, I will present our work on the synthesis of nanoporous two-dimensional materials such as graphene, graphitic carbon nitrides and zeolite precursors using a number of top-down and bottom-up synthetic strategies. In case of graphene, I will discuss defect nucleation and expansion strategies that allow incorporation of vacancy defects (nanopores) at a high density but with a narrow pore-size-distribution with a resolution of 0.3 Å for molecular differentiation, leading to realization of record-high performance in post-combustion carbon capture [1-6]. I will discuss mechanical reinforcement strategies that allows one to scale-up nanoporous single-layer graphene membranes for gas separation [1,5,7] which has led to a pilot plant demonstration project. Finally, I will discuss synthesis and tuning of gas transport pathways from nanoporous two-dimensional nanosheets and their films that allow facile fabrication of membranes for pre-combustion carbon capture [8,9].

References
1. Nature Communications 2018, 9, 2632
2. Science Advances 2019, 5, eaav1851
3. Energy & Environmental Sciences 2019, 12, 3305–3312
5. Nature Communications 2018, 9, 2632
7. Journal of Membrane Science 2021, 618, 118745
8. Science Advances 2020, 6, eaay9851