Center for Environmental & Applied Fluid Mechanics

Friday, September 18, 2009 11:00 a.m., 110 Maryland Hall

Multiscale Modeling of Suspension Flows

Dr. Marc Ingber National Science Foundation

The analysis of particles suspended in nonlinear, viscous shear flows is playing an increasingly important and often critical role in a number of developing technologies including and ceramic processing, encapsulation composite of electronic components, secondary oil recovery by hydraulic fracturing, carbon-dioxide sequestration, and the transport of sediments, contaminants, and slurries, to name a few. A common outstanding fundamental research issue associated with the technologies listed above is the development of the between microstructural interactions relationship and macroscopic behavior. Linking recent progress in molecularand nano-scale science to progress in the ability to accurately model suspension flows at the macroscale is an important scientific challenge. A multidisciplinary research experiment, including analysis. program and highperformance computing has been undertaken with the end goal of developing a reliable rheological model to allow engineers and scientists to design efficient processes for this important class of problems.