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Turbulent flows respond to bounding walls with a predominant spanwise heterogeneity – 
that is, a heterogeneity parallel to the prevailing transport direction – with formation of 
Reynolds-averaged turbulent secondary flows. These secondary rolls are known to be a 
manifestation of Prandtl’s secondary flow of the second kind: driven and sustained by the 
existence of spatial heterogeneities in the Reynolds (turbulent) stresses, all of which vanish 
in the absence of spanwise heterogeneity. Results from large-eddy simulations and 
complementary experimental measurements of flow over spanwise-heterogeneous 
surfaces are shown: the resultant secondary cell location is clearly correlated with the 
surface characteristics, which ultimately dictates the Reynolds-averaged flow patterns. 
However, results also show the potential for instantaneous sign reversals in the rotational 
sense of the secondary cells. This is accomplished with probability density functions and 
conditional sampling. In order to address this further, a base flow representing the 
streamwise rolls is introduced. The base flow intensity – based on a leading-order Galerkin 
projection – is allowed to vary in time through the introduction of time-dependent 
parameters. Upon substitution of the base flow into the streamwise momentum and 
streamwise vorticity transport equations, and via use of a vortex forcing model, we are able 
to assess the phase-space evolution (orbit) of the resulting system of ordinary differential 
equations. The system resembles the Lorenz system, but the forcing conditions differ 
intrinsically. Nevertheless, the system reveals that chaotic, non-periodic trajectories are 
possible for sufficient inertial conditions. Poincaré projection is used to assess the 
conditions needed for chaos, and to estimate the fractal dimension of the attractor. Its 
simplicity notwithstanding, the propensity for chaotic, non-periodic trajectories in the base 
flow model suggests similar dynamics is responsible for the large-scale reversals observed 
in the numerical and experimental datasets. 


