
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Spring Semester
Real Analysis

Monday, January 13, 2025

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Suppose f : R→ R is continuous. Define

fn(x) =
n

2

∫ x+ 1
n

t=x− 1
n

f(t) dt,

for n = 1, 2, 3, . . ..

(i) Show that fn converges pointwise to some limit function and identify the function.

(ii) Prove that the convergence is uniform in any compact interval.

Solution:

(i) The limit function is f . Fix x ∈ R. By continuity of f at x, given ε > 0 there
exists δ > 0 such that if |t−x| ≤ δ then |f(t)−f(x)| ≤ ε. Choose N so that 1/N ≤ δ.
Then for n ≥ N we have

|fn(x)− f(x)| =

∣∣∣∣∣n2
∫ x+ 1

n

t=x− 1
n

f(t) dt− f(x)

∣∣∣∣∣
=

∣∣∣∣∣n2
∫ x+ 1

n

t=x− 1
n

(f(t)− f(x)) dt

∣∣∣∣∣
≤ n

2

∫ x+ 1
n

t=x− 1
n

|f(t)− f(x)| dt

≤ n

2

∫ x+ 1
n

t=x− 1
n

ε dt = ε.

So fn(x)→ f(x).

(ii) Fix a compact interval [a, b]. Since a continuous function on a compact set is
uniformly continuous, f is uniformly continuous on [a−1, b+1]. So for any ε > 0 there
exists δ > 0 such that for all x, x′ ∈ [a−1, b+1] if |x′−x| ≤ δ, then |f(x′)−f(x)| ≤ ε.
Choose N so that 1/N ≤ δ. Then for n ≥ N and x ∈ [a, b] we have t ∈ [a− 1, b+ 1]
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whenever t ∈ [x− 1
n
, x+ 1

n
] and we have

|fn(x)− f(x)| =

∣∣∣∣∣n2
∫ x+ 1

n

t=x− 1
n

f(t) dt− f(x)

∣∣∣∣∣
=

∣∣∣∣∣n2
∫ x+ 1

n

t=x− 1
n

(f(t)− f(x)) dt

∣∣∣∣∣
≤ n

2

∫ x+ 1
n

t=x− 1
n

|f(t)− f(x)| dt

≤ n

2

∫ x+ 1
n

t=x− 1
n

ε dt = ε.

So fn → f uniformly on [a, b].

2. What is limx→∞
(

ex

1+ex

)x
?

Solution: We proceed to show that the limit is 1 by showing that the limit of the
reciprocal is 1. Since

lim
x→∞

(1 + 1/ex)e
x

= lim
y→∞

(1 + 1/y)y = e1 = e,

and
lim
x→∞

x

ex
= 0,

we conclude that

lim
x→∞

(
1 + ex

ex

)x

= lim
x→∞

(1 + 1/ex)x = lim
x→∞

[
(1 + 1/ex)e

x
] x

ex

.

lim
x→∞

(
1 + ex

ex

)x

= e0 = 1.

3. Suppose X and Y are disjoint sets and f : X → Y and g : Y → X are injective
(i.e., one-to-one) functions. The results of this exercise can be viewed partial building
blocks for using f and g to construct a bijection between X and Y. Starting with
y1 ∈ Y we consider infinite sequences of the form y1, x1, y2, x2, . . . , with f(xi) = yi+1

for i = 1, 2, . . . , and g(yi) = xi for i = 1, 2, . . ., which can be pictured using the
following diagram:

y1
g→ x1

f→ y2
g→ x2

f→ y3
g→ · · · .

Such a sequence will be called initialized if y1 /∈ Imf , i.e., if there is no x ∈ X such
that f(x) = y1.
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(i) Show that an initialized sequence cannot contain repeated values, or equivalently
that xi 6= xj and yi 6= yj whenever i 6= j.

(ii) Show that if y1, x1, y2, x2, . . . and y′1, x
′
1, y
′
2, x
′
2, . . . are initialized sequences with

y1 6= y′1, then
{yi : i = 1, 2, . . .} ∩ {y′i : i = 1, 2, . . .} = ∅, (a)

and
{xi : i = 1, 2, . . .} ∩ {x′i : i = 1, 2, . . .} = ∅. (b)

You do not have to show this, but as a consequence of (i) and (ii), if every
element of X is an element in some initialized sequence then we can define a bijection
h : X → Y as follows. For x ∈ X, by (ii) there can be at most one initialized sequence
containing x and by (i) the position of x in that sequence is unambiguous, and the
map h sending x to its immediate predecessor y in that sequence is well-defined. The
image of this map one-to-one since by (i) and (ii) y cannot appear in more than one
initialized sequence and in that sequence it can appear at most once. For any y ∈ Y,
y has some x = g(y) as a successor, so y = h(x) and we see that h is a surjection.

Solution: (i) The proof is by contradiction. Suppose xi is the first repeated value
in an initialized sequence. If it is xi then we have xi = xj for some j > i. Since
g(yi) = xi = xj = g(yj) and since g is injective we have yi = yj giving an earlier
repeated value, a contradiction. On the other hand, yi is the first repeated value,
then there are two cases to consider. If i = 1 then y1 = yj for some j > 1. But then
we would have y1 = f(xj−1) contradicting the assumption that y1 /∈ Im(f). If i > 1
then we would have f(xi−1) = yi = yj = f(xj−1) so xi−1 = xj−1 by injectivity of f,
again giving an earlier repeated value, a contradiction.

(ii) The proof of (a) is by contradiction. Suppose yi = y′j. If i, j > 1 then we
have f(xi−1) = yi = y′j = f(x′j−1) so xi−1 = x′j−1 since f is injective. Similarly,
yi−1 = g(xi−1) = g(x′j−1) = y′j−1 giving yi−1 = y′j−1 since g is injective. If i = j we
can repeat this argument i − 1 times to give y1 = y′1 a contradiction. If j > i then
y1 = y′j = f(x′j) contradicting the assumption that the first sequence is initialized. If
j < i we also get a contradiction by the same argument.

The proof of (b) is by contradiction. If xi = x′j for some i, j then we have yi =
f(xi) = f(x′j) = yj which contradicts (a).

4. Suppose (x(n))∞n=1 is a sequence of points in Rd with the property that

‖x(n+1) − x(n)‖ ≤ c‖x(n) − x(n−1)‖

for n = 2, 3, . . . , and for some constant c ∈ (0, 1). (Here ‖x‖ denotes the Euclidean
norm of x ∈ Rd.) Show that the sequence converges to some finite limit.
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Solution: For m > n observe that by making repeated use of the given inequality
we have

‖x(m) − x(m−1)‖ ≤ c‖x(m−1) − x(m−2)‖
≤ c2‖x(m−2) − x(m−3)‖

...

≤ cm−n−1‖x(n+1) − x(n)‖.

We proceed to show that the sequence is Cauchy, from which the desired conclusion
follows. Indeed, if m > n ≥ 1 we can use the triangle inequality to write

‖x(m) − x(n)‖ =

∥∥∥∥∥
m∑

i=n+1

(x(i) − x(i−1))

∥∥∥∥∥
≤

m∑
i=n+1

‖x(i) − x(i−1)‖

≤
m∑

i=n+1

ci−n−1‖x(n+1) − x(n)‖ ≤ 1

1− c
‖x(n+1) − x(n)‖

≤ cn−1

1− c
‖x(2) − x(1)‖.

5. Suppose f : [0,+∞) → R is a continuous function and a sequence of functions
fn : [0,+∞) → R for n = 1, 2, . . . is defined by fn(x) := f(xn). Suppose that the
functions f1, f2, . . . are equicontinous at 1, i.e., that for any ε > 0 there exists δ > 0
such that

|fn(x)− fn(1)| < ε for all n = 1, 2, . . . and x ∈ (1− δ, 1 + δ).

Show that f must be a constant function.

Solution: Fix x∗ > 0 and ε > 0. By equicontinuity at 1, there exists δ > 0 such that
for all n and x satisfying |x− 1| ≤ δ we have |fn(x)− fn(1)| ≤ ε. For such a value of
δ, since limn→∞(x∗)1/n = 1, there exists n such that |(x∗)1/n − 1| ≤ δ, so we have

|f(x∗)− f(1)| = |fn((x∗)1/n)− fn(11/n)| = |fn((x∗)1/n)− fn(1)| ≤ ε.

Since ε is arbitrary and f is continuous we conclude that f(x∗) = f(1). We have
shown f(x∗) = f(1) for all x∗ > 0. Since f is continuous, we can conclude that
f(0) = f(1) holds as well, so f is constant.
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6. Consider the power series

f(x) =
∑

p prime

xp = x2 + x3 + x5 + · · · .

(i) What is the radius of convergence? Hint: Compare with other series with known
radius of convergence.

(ii) Show that

f(x) ≤ x2

1− x
for all 0 ≤ x < 1.

Solution: (i) We have

|f(x)| ≤
∑

p prime

|x|p ≤
∞∑
p=2

|x|p,

which we know converges for |x| < 1 so the radius of convergence is at least 1. On
the other hand, the series does not converge for x = 1, so the radius of convergence
is 1.

(ii) For 0 ≤ x < 1 the we have

f(x) ≤
∞∑
p=2

xp = x2
∞∑
p=0

xp =
x2

1− x
.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Probability

Tuesday, January 14, 2025

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Suppose n > 1. We put n balls into n boxes independently of one another so that
each ball is equally likely to be put into any of the n boxes. Compute the probability
that box number 1 is the only empty box.

Solution: Box 1 is the only empty box means that the n balls must go into the
remaining n− 1 boxes in such a way that exactly 2 balls go into some box other than
box 1 and the remaining n − 2 balls must go into the remaining n − 2 boxes one in
each. Let Ei be the event that box 1 is the only empty box and the 2 balls go into
box i (i = 2, 3, . . . , n). To count the number of configurations in Ei we select the 2
balls to go into box i from the n possible in

(
n
2

)
ways, and once these are selected,

the remaining n− 2 balls can go into the remaining n− 2 boxes in (n− 2)! ways to
keep box 1 empty. Since there are nn possible ways the n balls can enter the n boxes,
we have

P (Ei) =

(
n
2

)
(n− 2)!

nn
.

The Ei’s are mutually exclusive, therefore,

P (
n⋃

i=2

Ei) =
n∑

i=2

P (Ei) = (n− 1)

(
n
2

)
(n− 2)!

nn
=

(
n
2

)
(n− 1)!

nn

is the desired probability.

2. For each integer n ≥ 1, Xn is discrete uniform on the integers from 1 through n
inclusive, and let N be geometrically distributed with probability of success 0 < p < 1
independent of all the Xn’s. Compute E(XN) and simplify as much as possible.
Recall: P (N = n) = p(1 − p)n−1 for n = 1, 2, 3, . . . ; and, P (Xn = j) = 1

n
for

j = 1, 2, . . . , n.

Solution: We first compute E(XN |N = n) = E(Xn|N = n) = E(Xn) = n+1
2
. By the
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law of total expectation

E(XN) =
∞∑
n=1

E(Xn|N = n)P (N = n)

=
∞∑
n=1

n + 1

2
· p(1− p)n−1

=
1

2

∞∑
n=1

n · p(1− p)n−1 +
1

2

∞∑
n=1

p(1− p)n−1

=
1

2
E(N) +

1

2
· 1 ∗

=
1

2p
+

1

2

=
1 + p

2p
.

* Here we used the fact that the mean of a geometric(p) is 1/p.

3. Suppose n > 1. We flip a fair coin until the n-th head occurs and we stop. If this nth
head occurs on the 2n-th flip of the coin, what is the probability that the (n− 1)-st
head happens on flip 2n− 1? Simplify completely.

Solution: To determine the probability that the (n − 1)-th head occurs on the
(2n − 1)-th flip given that the n-th head occurs on the 2n-th flip, we observe that
there are

(
2n−1
n−1

)
possible sequences with exactly n− 1 heads in the first 2n− 1 flips.

Among these, the number of sequences where the (n− 1)-th head specifically occurs
on the (2n− 1)-th flip is

(
2n−2
n−2

)
, since the first 2n− 2 flips must contain exactly n− 2

heads. Therefore, the desired probability is the ratio of these two quantities:(
2n−2
n−2

)(
2n−1
n−1

) =
n− 1

2n− 1
.

Alternatively: Given that the 2n-th flip is the first time we see n heads, all arrange-
ments of the the n− 1 heads and n tails among the previous 2n− 1 flips are equally
likely, so the chance that the last (2n− 1)-th flip is heads is

(n− 1)/(2n− 1)

.

3



4. Let X and Y be independent and identically distributed unit exponential random
variables, i.e., they each have the PDF f(x) = e−x for x > 0. Compute the conditional
probability that X < 2 given that X/Y > 1.

Solution:

P (X < 2|X > Y ) =
P (Y < X < 2)

P (X > Y )

∗∗
=

∫ 2

0

∫ x

0
e−xe−y dydx

1
2

= 2

∫ 2

0

e−x − e−2x dx

= 1− 2e−2 + e−4 or (1− e−2)2.

**FYI: Since X, Y are IID and continuous it follows that P (X > Y ) = P (Y > X)
and P (X = Y ) = 0, which implies P (X > Y ) = 1

2
.

5. Let a > 0 be a fixed positive constant, and suppose that in a crowd of size n the
probability that a particular person has a trait is a/n independent from person to
person. If it’s known that as n tends to ∞, the probability the crowd has nobody
with the trait is 1/e2. Determine with justification the value of a.

Solution: If we let Xn count the number in the crowd of size n that exhibit the trait,
then Xn is binomial with parameters n and p = a

n
. Therefore, P (Xn = 0) = (1− a

n
)n.

Now, as n→∞, we have

lim
n→∞

(1− a

n
)n = e−a =

1

e2
.

This implies a = 2.

Alternatively: Xn converges in distribution to X ∼Poisson(a). Consequently, P (X =
0) = e−aa0

0!
= e−a. Since we’re told P (X = 0) = e−2, it clearly follows a = 2.

6. Consider rectangles whose base and height are independent and uniformly distributed
on the interval [0, 1]. Find the PDF of the area of the rectangle.
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Solution: Let X and Y , respectively, denotes the length and width of the rectangle
and let A = XY be the resulting area. Since x, y ∈ (0, 1) we have a = xy ∈ (0, 1),
and, for such a, the CDF is

FA(a) = P (XY ≤ a) = 1− P (XY > a)

= 1−
∫ 1

a

∫ 1

a/x

1 dydx

= 1−
∫ 1

a

1− a

x
dx

= 1−
{
x− a ln(x)|x=1

x=a

}
= a− a ln(a).

Consequently, the PDF of the area is

fA(a) =
d

da
FA(a) = − ln(a) for 0 < a < 1.

Alternatively: Consider the transformation a = xy and b = y. The inverse transfor-
mation is x = a/b and y = b. Since 0 < x, y < 1 it follows 0 < a < b < 1, and the

Jacobian on this inverse transformation is J = det

[
1
b
− a

b2

0 1

]
= 1

b
. It follows the

joint PDF of A and B is

fA,B(a, b) =
1

b
for 0 < a < b < 1

and the marginal PDF of A is, for 0 < a < 1,

fA(a) =

∫ 1

a

1

b
db = − ln(a).
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Spring Semester
Linear Algebra

Wednesday, January 15, 2025

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let S ∈ Rn×n be a symmetric and invertible matrix with eigenvalues λ1, λ2, . . . , λn.
Consider a polynomial p(x) of degree at most n− 1:

p(x) = h0 + h1x+ h2x
2 + . . .+ hn−1x

n−1.

Suppose you are given values y1, y2, . . . , yn ∈ R and you wish to determine coefficients
h0, h1, . . . , hn−1 such that p(λi) = yi for all i = 1, 2, . . . , n.

(a) Write the linear system corresponding to this problem, i.e., write the problem
in the form Ab = c, specifying the n×n matrix A and the column vectors b and
c.

(b) What conditions must S (or equivalently, its eigenvalues λ1, . . . , λn) satisfy for
the system in (a) to have a unique solution? Explain.

Solution: (a)

A =


1 λ1 λ21 . . . λn−11

1 λ2 λ22 . . . λn−12

1
...

... . . .
...

1 λn λ2n . . . λn−1n

 b =


h0
h1
...

hn−1

 c =


y1
y2
...
yn


(b) In order for this system to have a unique solution, A must be invertible. Hence,
we need det(A) 6= 0. Calculating this determinant, we get

det(A) =
∏

0≤i≤j≤n

λj − λi

hence all λi must be distinct or, equivalently, the matrix S non-derogatory. The
matrix A is called the Vandermonde matrix.

2. Verify that given an invertible matrix A ∈ Rn×n and u, v ∈ Rn such that 1+vTA−1u 6=
0, then

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Solution: Multiplying the expressions in the identity on the right it suffices to show

(I + A−1uvT )−1 = I − A−1uvT

1 + vTA−1u
.
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Letting w = A−1u this reduces to showing that

(I + wvT )−1 = I − wvT

1 + vTw

(which is a somewhat standard identity). To see this, we have

(I + wvT )(I − wvT

1 + vTw
) = I + wvT − wvT

1 + vTw
− wvTwvT

1 + vTw

= I + wvT − wvT

1 + vTw
− w(vTw)vT

1 + vTw

= I + (1− 1

1 + vTw
− vTw

1 + vTw
)wvT = I.

3. Let A,B ∈ Rn×n. Suppose that (i) AB is symmetric and that (ii) A and B commute.
This problem has two parts:

(a) Prove that A does not need to be symmetric by providing a counterexample,
i.e., give an example of matrices A and B satisfying conditions (i) and (ii) for
which A is not symmetric.

(b) Give conditions on B such that for all A satisfying (i) and (ii) we can conclude
that A is symmetric.

Include a clear proof and explanation for both parts.

Solution: (a) For example, if we take A to be any invertible and asymmetric matrix
and B = A−1 then AB = BA = I, and the product is symmetric.

(b) Note that B = I works, but we can weaken this to B symmetric and invertible.
Under this assumption, if A and B commute and AB is symmetric we have

AB = BA = (AB)T = BTAT = BAT ,

and multiplying on the left by B−1 we get A = AT .

4. Let U, V ∈ Cn×n. Assume that UV = V U and that U is Hermitian. Prove that
there exists a basis in which U is diagonal and V is block diagonal, with each block
corresponding to an eigenspace of U .
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Solution: Since U is Hermitian, by the spectral theorem, there exists a unitary
matrix Q such that UQ = QΛ with Λ a diagonal matrix with ordered diagonal
elements λ1, . . . , λn expressed as

λ′1, . . . λ
′
1︸ ︷︷ ︸

k1

, λ′2, . . . λ
′
2︸ ︷︷ ︸

k2

, . . . λ′m, . . . λ
′
m︸ ︷︷ ︸

km

.

with λ′i distinct. Let the Ij = {p : λ′p = λj} for j = 1, . . . ,m. Since Q is unitary, its

columns q(i), i = 1, . . . , n form a basis of Cn and Λ is the matrix of Q in this basis.
In addition, q(i), i ∈ Ij forms a basis of the subspace {q ∈ Cn : Uq = λ′jq}. Observe
that for any eigenvector q with eigenvalue λi we have

UV q = V Uq = V λiq = λV q

i.e. V q is also an eigenvector of U with the same eigenvalue. If follows that λ = λ′j
for some j so we can write V q as a linear combination of q(i), i ∈ Ij. Thus, the matrix
of V in our basis has the desired block form.

5. Consider the following matrix:

T =

[
A B
C D

]
where A ∈ Ru×u, B ∈ Ru×w, C ∈ Rw×u, and D ∈ Rw×w.

Assuming A is invertible, define S = D − CA−1B.

(a) Prove that T is invertible if and only if S is also invertible.

(b) Assuming invertible S, prove rank(T ) = rank(A) + rank(S).

Hint: Start from the factorization:

T =

[
A 0
C S

] [
Iu A−1B
0 Iw

]
.

Solution:

(a) (i) T invertible ⇒ S invertible

Write

T−1 =

[
E F
G H

]
where E ∈ Ru×u, F ∈ Ru×w, G ∈ Rw×u, H ∈ Rw×w.

Since by assumption T is invertible,

I =

[
AE +BG AF +BH
CE +DG CF +DH

]
4



which implies

AF +BH = 0u×w ⇒ F = −A−1BH
CF +DH = Iw ⇒ (D − CA−1B)H = SH = Iw ⇒ H = S−1

thus proving invertibility of S.

(ii) S invertible ⇒ T invertible

It suffices to show that the factors in the matrix product given in the hint are both
invertible. The upper block triangular matrix (right factor) is clearly invertible, as
its determinant is 1. The lower block triangular matrix (left factor) has the following
inverse [

A 0
C S

]−1
=

[
A−1 0

−S−1CA−1 S−1

]
which exists due to invertibility of A and S (by assumption).

(b) Let T = UV with U, V the left and right factors in the hint respectively. Knowing
that the rank of a block triangular matrix is lower bounded by the sum of the ranks
of the block diagonals, we have rank(V ) = u + w. Hence, since V is full rank,
rank(UV ) = rank(U). By the same property,

rank(T ) = rank(U) ≥ rank(A) + rank(S).

But since A and S are invertible, they have full rank and the above holds with
equality.

6. Let A ∈ Rm×n with singular value decomposition:

A = UΣV T

where Σ is a rectangular matrix with diagonal entries σ1, σ2, . . . , σr, 0, . . . , 0.

Let PR denote the orthogonal projection matrix onto the range of A.

(a) Write PR as a function of U .

(b) Prove PR = AA†, where A† is the Moore-Penrose pseudoinverse.

Solution: (a)

PR = U

[
Ir 0
0 0

]
UT
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(b) We know

A† = V Σ†UT = V



1
σ1

0 0 0 0 . . . 0

0 1
σ2

0
...

... . . . 0
... 0

. . . 0
... . . . 0

...
... 0 1

σr
0 . . . 0

...
...

... 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 0


UT

leading to AA† = UΣV TV Σ†UT = UΣΣ†UT = PR.
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