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1. This closed-book examination consists of 15 problems, each worth 5 points. The
passing grade has been set at 50 points, i.e., 2/3 of the total points. Partial credit
will be given as appropriate; each part of a problem will be given the same weight.
If you are unable to prove a result asserted in one part of a problem, you may still
use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been grouped by topic, but there are roughly equally many
mainly motivated by each of the three areas identified in the syllabus (linear algebra;
real analysis; probability). Nor have the problems been arranged systematically by
difficulty. If a problem directs you to use a particular method of analysis, you must
use it in order to receive substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. The examination will begin at 8:30 AM; lunch and refreshments will be provided.
The exam will end just before 5:00 PM. You may leave before then, but in that case
you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. A vector or matrix is referred to as integral if all of its entries are integers. Let A
be a nonsingular n× n integral matrix. Show A−1b is integral for all integral column
n-vectors b if and only if det(A) = 1 or −1.

Solution: If det(A) = 1 or −1, then the result follows from Cramer’s rule, or the

cofactor formula for the inverse: A−1 = CT

det(A)
; Since CT also has integer entries and

det(A) = 1 or −1, A−1 has integer entries and so A−1b is an integer vector.

Conversely, if A−1b is integral for every integral b, A−1ei is integral, where ei is the
i-th standard unit vector. Thus, every column of A−1 has integer entries. Therefore,
det(A−1) is an integer. However, det(A) det(A−1) = det(I) = 1 and both det(A) and
det(A−1) are integers. Thus, they have to be 1 or −1.

2. For any nonnegative integer-valued random variable, define its probability generating
function by ΦX(t) = E(tX) for all real t.

(a) For any a > 0, show that for 0 ≤ t ≤ 1

P (X ≤ a) ≤ ΦX(t)

ta
.

(b) Use the above result to show for a Poisson random variable N with parameter λ
and for any a ∈ [0, λ] that

P (N ≤ a) ≤ e−λ

(
eλ

a

)a

Solution: (a) Clearly, X ≤ a ⇐⇒ tX ≥ ta for 0 ≤ t ≤ 1. Thus,

P (X ≤ a) = P (tX ≥ ta) ≤ E(
tX

ta
: tX ≥ ta) ≤ E(tX)

ta
.

(b) For a Poisson random variable N

ΦN(t) = e−λ

∞∑
n=0

λntn

n!
= eλ(t−1).

Thus, the bound in (a) becomes

P (N ≤ a) ≤ eλ(t−1)

ta
= eλ(t−1)−a ln t
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for all t ∈ [0, 1]. Minimizing the exponent over t one finds that t = a/λ. Furthermore,
t ∈ [0, 1] when a ∈ [0, λ]. Thus, the sharpest bound obtained for t = a/λ is

P (N ≤ a) ≤ ea−λ

(a/λ)a
= e−λ

(
eλ

a

)a

.

3. Assuming that temperature varies continuously with location, prove that there are,
at any given time, antipodal points on the equator of the earth that have the same
temperature.

Solution: By considering the temperature along any great circle, the problem trans-
lates into the following math problem. Let f : [0, 2π] → R be continuous, and suppose
f(0) = f(2π). Prove that there exists c ∈ [0, π] such that f(c) = f(c+ π).

For this, consider g : [0, π] → R defined by g(x) := f(x + π) − f(x). Then g is
continuous, with g(0) = f(π) − f(0) = f(π) − f(2π) = −g(π). If g(0) = 0, we can
take c = 0. Otherwise, g(0) and g(π) have opposite sign and so, by the intermediate
value theorem, g(c) = 0 (as desired) for some c ∈ [0, π].

4. Suppose the probability that a family will have n children is 2−n−1 and that each child
is equally likely to be male or female, independently of the other children. What is
the conditional probability that a family has at least one child given it has no boys?

Solution: Let N be the number of children and let B be the number of boys.

P (B = 0) =
∞∑
n=0

P (B = 0, N = n)

=
∞∑
n=0

P (B = 0|N = n)P (N = n)

=
∞∑
n=0

2−n2−n−1

=
1

2

∞∑
n=0

4−n

=
2

3

Now P (B = 0, N ≥ 1) = P (B = 0) − P (B = 0, N = 0) = P (B = 0) − 1
2
= 1

6
since

P (B = 0, N = 0) = P (N = 0). Hence, P (N ≥ 1|B = 0) = 1
6
/2
3
= 1

4
.

3



5. Suppose the probability that the Dow Jones Stock Index increases today is 0.54, that
it increases tomorrow is also 0.54, and that it rises on both days is 0.28. Find (with
explanation) the probability that it increases on neither day.

Solution: Let D be the event that the Index rises today, and M the event that it
rises tomorrow. Then the desired probability is

P ((D ∪M)c) = 1− P (D ∪M) = 1− [P (D) + P (M)− P (D ∩M)]

= 1− [0.54 + 0.54− 0.28] = 1− 0.80 = 0.20.

6. Let Am ∈ R4×4, m = 1, 2, · · · , defined by

Am =


1 2m 3m 4m

3m 1 4m 2m

2m 4m 1 3m

4m 3m 2m 1


Determine for which values of m the matrix Am is invertible and justify your answer.

Solution: Let

J :=

[
0 1
1 0

]
, Bm =

[
1 2m

3m 1

]
, Cm =

[
2m 4m

4m 3m

]
Then Am can be written as

Am =

[
Bm JCmJ
Cm JBmJ

]
and it is similar to

Dm :=

[
Bm − JCm 0

0 Bm + JCm

]
via an orthogonal similarity matrix

S =
1√
2

[
I −J
I J

]
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Since Dm is block diagonal, we have det(Am) = det(Bm − JCm) det(Bm + JCm).
Since

det(Bm − JCm) = (1− 4m)2 − (2m − 3m)(3m − 2m) = (4m − 1)2 + (3m − 2m)2 > 0

for all m ≥ 1, we only need to investigate det(Bm + JCm). We note that

det(Bm + JCm) = (1 + 4m)2 − (2m + 3m)2 =: fm,

and f1 = 0, f2 = 172 − 132 > 0. Since it can be shown that the sequence fm is an
increasing sequence on m, we conclude that det(Bm + JCm) > 0, hence det(Am) > 0
for all m ≥ 2. For m = 1, det(A1) = 0 from det(B1 + JC1) = f1 = 0. Therefore Am

is invertible for all m ≥ 2 but it is not for m = 1.

Alternative solution: If m = 1 then Am is singular since the sum of the first and
fourth columns equals the sum of the second and third columns.

For m > 1 observe that by permuting columns of Am we obtain
4m 3m 2m 1
2m 4m 1m 3m

3m 1 4m 2m

1 2m 3m 4m


so proving that Am is invertible amounts to proving invertibility of this matrix.
Clearly, for m = 2 we have

1 + 2m + 3m < 4m.

Assuming this inequality holds for some m > 1 we have

1 + 2m+1 + 3m+1 < (1 + 2m + 3m)× 3 < 4m × 4 = 4m+1.

So for m > 1 the matrix is diagonally dominant i.e. the sum of the absolute values
of the non-diagonal entries in a given row (column) is less than the absolute value
of the diagonal entry in that row (column). Invertibility follows from the Gershgorin
circle theorem.

7. Consider the one-parameter family of second-order homogeneous linear differential
equations of the form

d

dx

[
p(x)

du

dx

]
+ [λρ(x)− q(x)]u = 0, a ≤ x ≤ b (1)

with endpoint (or boundary) conditions u(a) = u(b) = 0, where λ is a parameter, the
functions p, ρ, q are continuous on [a, b], and p, ρ are positive on [a, b]. Let u(x) and
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v(x) be solutions of (??) corresponding to distinct parameters λ and µ, respectively,
that satisfy the given endpoint conditions. Show that∫ b

a

ρ(x)u(x)v(x)dx = 0

Solution: By hypothesis, we have the following equations :

d

dx

[
p(x)

du

dx

]
+ [λρ(x)− q(x)]u = 0, a ≤ x ≤ b (2)

and

d

dx

[
p(x)

dv

dx

]
+ [µρ(x)− q(x)]v = 0, a ≤ x ≤ b (3)

Multiply (??) by v(x) and integrate both sides from a to b to obtain:∫ b

a

v(x)
d

dx

[
p(x)

du

dx

]
dx+

∫ b

a

λρ(x)u(x)v(x)dx−
∫ b

a

q(x)u(x)v(x)dx = 0

Using integration by parts on the first term above, we obtain :

∫ b

a

d

dx

[
p (x)

du

dx

]
v (x) dx =

[
p (x)

du

dx
v (x)

]b
a

−
∫ b

a

p (x)
du

dx

dv

dx
dx

The first term on the right hand side is 0 because of the boundary conditions.

Thus, we obtain

−
∫ b

a

p (x)
du

dx

dv

dx
dx+

∫ b

a

λρ(x)u(x)v(x)dx−
∫ b

a

q(x)u(x)v(x)dx = 0 (4)

Similarly, by multiplying (??) by u(x) and integrating both sides from a to b, we
obtain

−
∫ b

a

p (x)
du

dx

dv

dx
dx+

∫ b

a

µρ(x)u(x)v(x)dx−
∫ b

a

q(x)u(x)v(x)dx = 0 (5)

Subtracting (??) from (??), we get∫ b

a

(λ− µ)ρ(x)u(x)v(x)dx = 0

Since λ ̸= µ, this implies that
∫ b

a
ρ(x)u(x)v(x)dx = 0
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8. Let (xn) be a sequence of positive numbers, and denote the average of the first n
entries by

x̄n = (x1 + · · ·+ xn)/n.

Let N = (nk) be a subsequence of N with limk→∞ nk+1/nk = r > 0. Prove: if the
sequence (x̄n) converges along N to x, then

x/r ≤ lim inf x̄n ≤ lim sup x̄n ≤ r · x .

Solution: For nk ≤ n < nk+1, the positivity of the xn yields

nk

nk+1

x̄nk
≤ x̄n ≤ x̄nk+1

· nk+1

nk

.

As n → ∞, the integer k for which nk ≤ n < nk+1 tends to +∞, and our assumptions
imply that the left-most member converges to x/r and the right-most to rx.

9. If x is a real number, we use ⌊x⌋ to denote its floor, that is, the largest integer that
is less than or equal to x. Show that limn→∞ n!e− ⌊n!e⌋ = 0.

Solution: Note that x ≥ ⌊x⌋ for all x. We can write e =
∑∞

k=0 1/k! so that n!e =
Mn + Fn where Mn = n!

∑n
k=0 1/k!, which is clearly a positive integer, and Fn =

n!
∑∞

k=n+1 1/k!. Now

Fn = 1/(n+ 1) + 1/((n+ 1)(n+ 2)) + 1/((n+ 1)(n+ 2)(n+ 3)) + · · · =

{1 + 1/(n+ 2) + 1/((n+ 2)(n+ 3)) + 1/((n+ 2)(n+ 3)(n+ 4)) + · · · } /(n+ 1)

≤
{
1 + 1/(n+ 1) + 1/(n+ 1)2 + 1/(n+ 1)3 + · · ·

}
/(n+ 1)

= 1/((1− 1/(n+ 1))(n+ 1)) = 1/n < 1.

So we conclude that that
⌊n!e⌋ = Mn,

and
n!e− ⌊n!e⌋ = Fn ≤ 1/n,

and the result follows.
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10. Suppose A and B are n× n matrices such that I − AB is invertible with inverse X.
Show that I −BA is invertible and find a simple expression for its inverse.

Hint: To arrive at a good guess for the inverse, write down formal power series
expansions for (I−BA)−1 and (I−AB)−1 to get a candidate for the desired inverse.
Then prove that the inverse is correct without using formal power series.

Solution: Formally,

X := (I − AB)−1 = I + AB + (AB)2 + (AB)3 · · ·

and we can write

(I−BA)−1 = I+BA+(BA)2+(BA)3+· · · = I+B(I+AB+(AB)2+· · · )A = I+B(I−AB)−1A.

So it appears that our candidate for the desired inverse is I + BXA where X =
(I − AB)−1. Now we proceed to show that this works without the series expansion.

(I −BA)(I +BXA) = I −BA−BABXA+BXA = I −BA+B(I − AB)XA

= I −BA+BIA = I −BA+BA = I.

11. Let n be a positive integer. We create a random n-digit (decimal) number as follows:

First we pick a random number k from {0, 1, 2, . . . , n} uniformly; that is, the proba-
bility of picking each k is 1/(n+ 1).

Then we pick uniformly at random an n-digit number in which exactly k of the digits
are 1s and the remaining n−k digits are 9s. That is, given k, all such n-digit numbers
are equally likely to be picked.

Call the resulting value X.

Question: What is the expected value of X? Justify your answer.

For example, suppose n = 5. If k = 2 (with probability 1/6) then the ten numbers
99911, 99191, 99119, 91991, 91919, 91199, 19991, 19919, 19199, 11999 are equally
likely (with probability 1

6
· 1
10

= 1
60
). However,X takes the value 11111 with probability

1
6
. So not all values of X have the same probability.

Solution: Let Xi be the value of the i’th digit in X. Observe that it is equally
likely that this digit is a 1 or a 9, i.e. Pr{Xi = 1} = Pr{Xi = 9} = 1

2
. Note that

E(Xi) =
1
2
· 1 + 1

2
· 9 = 1

2
· 10 = 5.
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We have
X = X0 + 10X1 + 102X2 + · · ·+ 10n−1Xn

and so by linearity of expectation

E(X) = E(X0) + 10E(X1) + 102E(X2) + · · ·+ 10n−1E(Xn)

= 5
[
1 + 10 + 100 + · · ·+ 10n−1

]
= 5

(
10n − 1

10− 1

)
or written in decimal

E(X) = 5555 . . . 5︸ ︷︷ ︸
n digits

.

Alternative solution: The distribution of X, which is an n digit number whose digits
are all 1’s and 9’s has the following symmetry property. For every n digit number x
all of whose digits are 1’s and 9’s, if x̃ is the number obtained by flipping the digits of
x (changing 1’s to 9’s and 9’s to 1’s) then P [X = x] = P [X = x̃]. For each pair of such
values x, x̃ let p denote the ordered pair [x, x̃] where x < x̃. Observe x+x̃

2
= 5555 . . . 5︸ ︷︷ ︸

n digits

for all pairs p. We can replace the sum defining the expected value of X by a sum
over pairs to obtain

E[X] =
∑
x

xP [X = x] =
∑
p

xP [X = x] + x̃P [X = x̃] =
∑
p

(x+ x̃)P [X = x] =

∑
p

5555 . . . 5︸ ︷︷ ︸
n digits

×2P [X = x] = 5555 . . . 5︸ ︷︷ ︸
n digits

∑
p

P [X = x] + P [X = x̃] = 5555 . . . 5︸ ︷︷ ︸
n digits

.

12. For which real value(s) of x does the following series converge and diverge:

∞∑
n=1

sin(
x

n2
).

Justify your answer.

Solution: This series converges absolutely for all real x. Here’s why:

For y ≥ 0,

| sin(y)| =
∣∣∣∣∫ y

0

cos(u) du

∣∣∣∣ ≤ ∫ y

0

| cos(u)| du ≤
∫ y

0

1 du = y.
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If y < 0, then −y > 0 and | sin(y)| = | − sin(−y)| ≤ −y. Therefore, for all real y,
| sin(y)| ≤ |y|. Now,∣∣∣∣∣

∞∑
n=1

sin(
x

n2
)

∣∣∣∣∣ ≤
∞∑
n=1

| sin( x
n2

)| ≤ |x|
∞∑
n=1

1

n2
< ∞

for all real x.

13. Consider the vector space V = {a0+a1x+ · · ·+anx
n : ai real, n fixed} of all polyno-

mials of degree less than or equal to n and the derivative transformation D : V → V
sending polynomials in V to their derivatives. Determine the following: the matrix
of D with respect to the basis 1, x, x2, . . . , xn of V ; the rank of D : V → V ; and the
nullspace of D.

Solution: Clearly, D(1) = 0 and for any 1 ≤ k ≤ n, D(xk) = kxk−1. Therefore,

D =



0 1 0 · · · 0 0
0 0 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0
. . . n− 1 0

0 0 0 · · · 0 n
0 0 0 · · · 0 0


.

Since this (n + 1) × (n + 1) matrix is in echelon form the rank of D is the number
of pivot entries, which is n. The nullspace of D is the subspace of polynomials in
V that get mapped to the zero polynomial under D, i.e., the constant polynomials:
nullspace(D) = {a0 : a0 real}.

14. Cards are drawn one by one, at random, and without replacement from a standard
deck of 52 playing cards. What is the probability that the fourth Heart is drawn on
the tenth draw? (Do not simplify to a decimal number.)

Solution: Let A be the event that the tenth draw is a Heart, and B be the event
that there are exactly three Hearts drawn in the first nine draws.

Rephrasing its description, A is the event that in choosing 9 cards, 3 are chosen from
the 13 Hearts and 6 from the 39 non-Hearts, so using an equally likely probability
model, we have

P [A] =

(
13
3

)(
39
6

)(
52
9

) .
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Conditional upon event A, B is the event that a randomly chosen card drawn from
a (partial) deck of 10 Hearts and 33 non-Hearts is a Heart. Thus,

P [B|A] = 10

43
.

By the multiplication rule for the probability of an intersection event,

P [AB] = P [B|A]P [A] =
10

43

(
13
3

)(
39
6

)(
52
9

) .

15. Let A,B ∈ Rn×n be two symmetric and positive semidefinite matrices. Show that

tr(AB) ≥ 0,

where tr denotes the trace, i.e., the sum of the entries on the diagonal.

Solution: Since B is positive semi-definite, we can decompose

B = µ1b1b
T
1 + µ2b2b

T
2 + . . .+ µnbnb

T
n

where µ1, . . . , µn are the (nonnegative) eigenvalues of B, and b1, . . . , bn are the eigen-
vectors of B. Thus,

tr(AB) = tr(A(
∑n

i=1 µibib
T
i ))

= tr(
∑n

i=1(µiAbib
T
i ))

=
∑n

i=1 tr(µiAbib
T
i )

=
∑n

i=1 µitr(Abib
T
i )

=
∑n

i=1 µi(b
T
i Abi)

where in the last equality, we use the observation that tr(Abib
T
i ) = bTi Abi.

Since A is positive semidefinite, bTi Abi ≥ 0 for each i = 1, . . . , n. Since each µi ≥ 0,
the last sum above is a nonnegative real number, showing that tr(AB) ≥ 0.

Alternative solution: Recall that any real symmetric positive semidefinite matrix C
can be written as C1/2C1/2 for some real symmetric square matrix C1/2. By factoring
A and B in this manner we can write

tr(AB) = tr(A1/2A1/2B1/2B1/2) = tr(B1/2A1/2A1/2B1/2)

Observe that if we define C = B1/2A1/2 then by symmetry of the matrices A1/2 and
B1/2 we have Ct = (A1/2)t(B1/2)t = A1/2B1/2 and hence tr(AB) = tr(CCt). Since
CCt is symmetric ((CCt)t = (Ct)tCt = CCt) and positive semidefinite (vt(CCt)v =
(Cv)t(Cv) ≥ 0 its trace is the sum of its eigenvalues, all of which are nonnegative.
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