
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Fall Semester
Real Analysis

Tuesday, August 20, 2024

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. What is the value of
∞∑
n=3

1

n(lnn)(ln lnn)
?

Solution: Observe that the function

f(x) :=
1

x(lnx)(ln lnx)
, x ∈ (e,+∞),

is positive and strictly decreasing. In particular, f(x) ≤ f (bxc) on (e,+∞). There-
fore for any N ∈ N such that N > e,

N∑
n=3

1

n lnn ln lnn
=

∫ N+1

3

f (bxc) dx ≥
∫ N+1

3

f(x)dx.

Then we have∫ N+1

3

f(x)dx =

∫ ln(N+1)

ln 3

1

y ln y
dy =

∫ ln ln (N+1)

ln ln 3

dz

z
= ln ln ln (N + 1)− ln ln ln 3.

Therefore,

∞∑
n=3

1

n lnn ln lnn
= lim

N→∞

N∑
n=3

1

n lnn ln lnn
≥ lim

N→∞

∫ N+1

3

f(x)dx = +∞.

2. Let f : [0, 1]→ R be of class C1 with f(0) = 0. Prove that

‖f‖2∞ ≤
∫ 1

0

|f ′(x)|2dx

where ‖f‖∞ := sup {|f(x)| : 0 ≤ x ≤ 1}.

Solution: Since f ∈ C1([0, 1];R) and f(0) = 0, the fundamental theorem of calculus
implies that

f(x) =

∫ x

0

f ′(y)dy, ∀x ∈ [0, 1].

Then for all x ∈ [0, 1] we have

|f(x)| =
∣∣∣∣∫ x

0

f ′(y)dy

∣∣∣∣ ≤ ∫ x

0

|f ′(y)|dy ≤
∫ 1

0

|f ′(y)|dy =⇒ ‖f‖∞ ≤
∫ 1

0

|f ′(x)|dx.

The conclusion follows from the Cauchy–Schwarz inequality.
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3. Consider the following subset of R2:

E :=

{(
x, sin

1

x

)
: x ∈ (0, 1]

}
.

Write down, without proof, the closure of E, denoted by E. Then, prove or disprove:
E is path-connected, i.e., for any pair of distinct points p, q ∈ E, there exists a
continuous function γ : [a, b]→ E, with −∞ < a < b < +∞, such that γ(a) = p and
γ(b) = q.

Solution: The closure of E is given by the disjoint union

E = E t {(0, y) : y ∈ [−1, 1]}.

Claim. E is not pathwise-connected.

Proof. First, observe that E = {(x, f(x)) : x ∈ (0, 1)} where (0, 1] 3 x
f7−→ sin 1

x
.

Assume, to the contrary, that E is pathwise-connected. Then there exists a contin-
uous path γ : [a, b] → E, with −∞ < a < b < +∞, such that γ(a) = (0, 0) and
γ(b) = (1, sin 1). Notice that

[a, b] 3 t γ7−→ (x(t), y(t)) ∈ E

being continuous implies that both x and y are continuous. Moreover, by the com-
position of E, for all t ∈ [a, b] such that x(t) ∈ (0, 1] we have y(t) = f(x(t)).

Define
a := sup{t ∈ [a, b] : x(t) = 0}.

By continuity of x and the definition of supremum, we have that x(a) = 0 and
therefore a < b. Write yo = y(a) ∈ [−1, 1] and take y′ ∈ [−1, 1] \ {yo}. Denote

z̄′ = arcsin y′, z′ = z̄′ + 2π1{z̄′ < 1}.

Let xn = 1
z′+2(n−1)π for all n ∈ N+. Then xn > xn+1 for all n ∈ N+ and limn→∞ xn ↓ 0.

If z′ = 1 then take c = b; otherwise, by the intermediate value theorem, there exists
c ∈ (a, b) such that x(c) = 1

z′
. Take c1 = c and we have x(c1) = x1; applying the

intermediate value theorem repeatedly for all n ∈ N+, we can show that there exists
cn+1 ∈ (a, cn) such that x(cn+1) = xn+1. Thus,

γ(cn) = (x(cn), y(cn)) = (xn, f(xn)) = (xn, y
′), ∀n ∈ N+.
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Observe that {cn}n≥1 is a strictly decreasing sequence in [a, b]. By continuity of x
and by definition of a, we have cn ↓ a as n → ∞. By continuity of y, we have
y(cn)

n→∞−−−→ yo. However, y(cn) ≡ y′ 6= yo. The claim is concluded by contradiction.

Alternative proof :

The set E is the disjoint union of E and {0}× [−1, 1]. Observe that for any t > 0 we
have E ∩ ({t} × R) consists of a single point (t, sin(1/t)).

Suppose E is path-connected. so that there exists a continous function γ = (γ1, γ2) :
[0, 1]→ E with γ(0) = (2/π, 0) and γ(1) ∈ F := {0}× [−1, 1]. If such a γ exists, then
γ−1(F ) is a closed non-empty subset of [0, 1] and is hence compact. So there must
exist

t∗ = min{t ∈ [0, 1] : γ(t) ∈ F},

and since γ(0) /∈ F we must have t∗ > 0. Thus

(i) γ1(t) > 0 for all t ∈ [0, t∗) (since γ(t) /∈ F for t < t∗),

(ii) γ1(t
∗) = 0 (since γ(t∗) ∈ F ), and

(iii) limt→t∗ γ1(t
∗) = 0.

For any ε > 0, pick n > 1
2πε

with 0 = γ1(t
∗) < 1

2πn+(π/2)
< γ1(t

∗ − ε). By the

intermediate value there exists t ∈ [t∗ − ε, t∗) with γ1(t) = 1
2πn+(π/2)

. Since γ(t) ∈ E
and γ1(t) > 0 we have γ2(t) = sin(1/γ1(tn)) = sin(2πn + (π/2)) = 1. Let d(p, q)
denote the Euclidean distance between p, q ∈ R2. So

d(γ(t), (0, 1)) = d

((
1

2πn+ (π/2)
, 1

)
, (0, 1)

)
=

1

2πn+ (π/2)
<

1

2πn
< ε.

By continuity of γ we must have limt→t∗ γ(t) = (0, 1).

Using the same argument as above, we can find s ∈ [t∗− ε, t∗) with γ1(s) = 1
2πn+(3π/2)

and hence γ2(s) = −1 leading the the conclusion that lims→t∗ γ(s) = (0,−1), so we
have arrived at a contradiction.

4. Consider a sequence (fn)n≥1 of functions with fn ∈ C0 ([a, b];R) for all n ∈ N+. Sup-
pose that for any x ∈ [a, b] we have fn(x) ≥ fn+1(x) for all n ∈ N and limn→∞ fn(x) =
0. Prove or disprove: As n→∞, the functions fn converge uniformly to 0 on [a, b].

Solution: Claim: As n→∞, the functions fn converge uniformly to 0 on [a, b].

Proof. For any x we have fn(x) → 0 and f1(x) ≥ f2(x) ≥ · · · , so fn(x) ≥ 0 for
every n.
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Fix ε > 0. For any x there exists nx such that fnx(x) < ε/2, and by continuity of fnx

there exists δx > 0 such that fnx(y) < ε for all y ∈ B(x, δx). The balls B(x, δx) cover
the compact interval [a, b] so there exist x1, . . . , xk such that [a, b] ⊆

⋃k
i=1B(xi, δxi).

Let N := max1≤i≤k nxi . Then for any x ∈ [a, b] there exists i with x ∈ B(xi, δxi) and
therefore, for n ≥ N,

0 ≤ fn(x) ≤ fN(x) ≤ fnxi
(x) < ε. �

Alternative Proof. For all n ∈ N+, the function fn is continuous on [a, b] and therefore
Mn = supx∈[a,b] fn(x) is attainable; choose any xn ∈ arg maxx∈[a,b] fn(x) and we have
Mn = fn(xn). It suffices to establish limn→∞Mn = 0.

Fix any x ∈ [a, b]. We have 0 ≤ fn(x) ≤ Mn for any n ∈ N+. Also, observe
that Mn+1 = fn+1(xn+1) ≤ fn(xn+1) ≤ Mn for any n and therefore {Mn}n≥1 is a
non-increasing sequence over [0,M1]. Then limnMn =: M ∈ [0,M1].

Suppose that M > 0. Then there exists ε > 0 such that M > 3ε. Since (xn)n≥1 ⊂
[a, b], there exists a convergent subsequence (xkn)n≥1 such that limn→∞ xkn = x0 ∈
[a, b] by compactness of [a, b] on R.

On one hand, fn(x0) ↓ 0 implies fkn(x0) ↓ 0. Then, there exists N1 ∈ N+ such that
for all n ≥ N1 we have fkn(x0) < ε. Denote K := kN1 . By continuity of fK , there
exists δ > 0 such that for all x ∈ (−δ+x0, δ+x0) we have |fK(x)−fK(x0)| < ε, which
implies fK(x) < 2ε. Since xkn

n→∞−−−→ x0, there exists N2 ∈ N+ and N2 > N1 such that
|xkn − x| < δ for all n ≥ N2, and therefore fK(xkn) < 2ε. Since kn > kN1 = K for all
n ≥ N2 > N1, we have

Mkn = fkn(xkn) ≤ fK(xkn) < 2ε, ∀n ≥ N2.

On the other hand, Mkn
n→∞−−−→M > 3ε therefore, there exists N3 ∈ N+ and N3 > N2

such that for all n ≥ N3 we have |Mkn −M | < ε, which implies Mkn > M − ε > 2ε.
A contradiction occurs, and hence limn→∞Mn = 0, which implies fn⇒0 as n → ∞.
�

5. Let d ∈ N+, and consider a function f : Rd → R that satisfies

• for every compact K ⊂ Rd, f(K) is a compact subset of R; and

• for every nested decreasing sequence of compact subsets {Kn}n≥1 of Rd,

f

(⋂
n≥1

Kn

)
=
⋂
n≥1

f(Kn).
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Prove that f is continuous.

Solution: For any x ∈ Rd, let Kn = B1/n(x) := {y ∈ Rd : ‖y − x‖ ≤ 1
n
} for all

n ∈ N+, where ‖·‖ denotes the Euclidean norm. Observe that x ∈ Kn and Kn+1 ⊂ Kn

for all n ∈ N+. For any y ∈ Rd \ {x}, there exists N ∈ N+ such that ‖y − x‖ > 1
n

for
all n ≥ N , thus {x} =

⋂
n≥1Kn.

The Heine–Borel theorem implies that the sets Kn are compact; thus so are the sets
f(Kn) by the first assumption about f . Using the second assumption, we find

{f(x)} = f

(⋂
n≥1

Kn

)
=
⋂
n≥1

f(Kn).

By the compactness of the sets f(Kn), there exist −∞ < mn ≤ Mn < ∞ such that
mn,Mn ∈ f(Kn) and f(Kn) ⊂ [mn,Mn] for all n. Moreover, Kn+1 ⊂ Kn implies
f(Kn+1) ⊂ f(Kn). Therefore, (mn) is non-decreasing and (Mn) is non-increasing;
and for any L ∈ N+, the sequences (mn)n≥L and (Mn)n≥L take values in the compact
set f(KL). Notice that

m1 ≤ m2 ≤ · · · ≤ f(x) ≤ · · · ≤M2 ≤M1.

Then both limn→∞mn and limn→∞Mn exist and belong to
⋂
L≥1 f(KL). Thus, f(x) =

limn→∞mn = limn→∞Mn. That is, for any ε > 0, there exists N ∈ N+, and thus
δ = 1

N+1
> 0, such that for all y ∈ Rd with ‖y − x‖ < δ,

|f(y)− f(x)| ≤Mn −mn < ε,

where n = d 1
‖y−x‖e > N . Hence f is continuous at x. Finally, since x is arbitrarily

fixed, f is continuous on Rd.

6. Show that the equation xey + yex = 0 defines implicitly a function y = g(x) near the
point (0, 0) where g is of class C∞. Compute g(3)(0) by using the chain rule.

Solution: Define f : R2 → R by f(x, y) = xey + yex. Observe that f is of class C∞
and f(0, 0) = 0. The partial derivative

∂yf(x, y) = xey + ex

does not vanish at (0, 0), and hence the implicit function theorem can be applied
to conclude that there exists a function g defined on a neighborhood of 0 such that
f(x, g(x)) = 0; with f being C∞, so is g.
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Let h(x) = f(x, g(x)) = 0 and k(x) = eg(x). By the chain rule, for any d ∈ N+ we
have

0 = h(d)(x) = xk(d)(x) + dk(d−1)(x) +
d∑
l=0

(
d

l

)
g(l)(x)ex;

at x = 0, we have g(0) = 0 and

0 = h(d)(0) = dk(d−1)(0) +
d∑
l=1

(
d

l

)
g(l)(0).

Observe that

k(0)(x) = k(x) = eg(x) =⇒ g(1)(0) = −k(0)(0) = −1;

k(1)(x) = g(1)(x)eg(x) =⇒ g(2)(0) = −2k(1)(0)− 2g(1)(0) = −4g(1)(0) = 4;

k(2)(x) = {g(2)(x) + [g(1)(x)]2}eg(x) =⇒ g(3)(0) = −3k(2)(0)− 3g(2)(0)− 3g(1)(0) = −24.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Fall Semester
Probability

Wednesday, August 21, 2024

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Jeff and Donna have three children. Two children are chosen uniformly at random
on each day of the week to help with the dishes (with independent selections across
days). What is the probability that at least one child gets chosen every day of the
week?

FYI: There are seven (7) days in a week, and you do not need to simplify your answer
to a fraction.

Solution: If we call the children A, B, and C, and let Ai (resp., Bi, Ci) be the event
child A (resp., B, C) is selected on day i, i = 1, 2, . . . , 7, then

A :=
7⋂
i=1

Ai, B :=
7⋂
i=1

Bi, C :=
7⋂
i=1

Ci

represent the events that child A, B, C is selected all 7 days, respectively. Therefore,
A ∪ B ∪ C represents the event that at least one of A, B or C is selected all 7 days.
By the inclusion–exclusion rule, and since P(A) = P(B) = P(C) and P(A ∩ B) =
P(A ∩ C) = P(B ∩ C) and P(A ∩ B ∩ C) = 0, it follows that P(A ∪ B ∪ C) =
3P(A)− 3P(A ∩B) = 3(2

3
)7 − 3(1

3
)7 = 127

729

.
= 0.174.

2. You are dealt two cards from a well-shuffled deck of 52 cards. Given that both cards
are of the same color, what is the probability that they are of the same rank?

FYI: The 52 cards are comprised of 13 ranks (2,3,4,5,6,7,8,9,10,J,Q,K,A) in each of
4 suits (♣,♦,♥,♠), where ♣ and ♠ are colored black and ♦ and ♥ are colored red.

Solution: Out of the 25 remaining cards of the same color only 1 is the same rank;
therefore, the desired conditional probability is 1

25
.

3. Let X be a continuous random variable with probability density function (PDF)
f(x) = 1

π(1+x2)
for −∞ < x < +∞; such a random variable is said to have the

standard Cauchy distribution.

Find the PDF of the random variable Y =
1

X
.
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Solution: Solution 1. The cumulative distribution function (CDF) FY of Y is given
by

FY (y) = P(Y ≤ y) =


P(X < 0) + P

(
X ≥ 1

y

)
= 3

2
− FX

(
1
y

)
, y > 0;

1
2
, y = 0;

P( 1
y
≤ X < 0) = 1

2
− FX( 1

y
), y < 0,

with FX being the CDF of X. On R \ {0}, FY is clearly differentiable with F ′Y (y) =
1
y2
f( 1

y
) = f(y) by the chain rule. Also, it is easy to check, since f is even, that

F ′Y (0+) = F ′Y (0−) = lim
M→+∞

M

∫ +∞

M

f(x)dx = f(0),

where the last equality follows from l’Hopital’s rule. Therefore, FY is differentiable
on R and the PDF of Y is fY = f ; we see Y is, again, standard Cauchy.

Solution 2. Using the method of Jacobians: When xy 6= 0, y = 1
x

=⇒ x = 1
y

is the

inverse transformation, and J = dx
dy

= − 1
y2

, and

fY (y) = f(x) · |J | = f

(
1

y

)
· 1

y2
=

1

π(1 + y2)
= f(y).

By definition,

fY (0) = lim
ε↓0

P(−ε < Y < ε)

2ε
= lim

ε↓0

P(|X| > 1
ε
)

2ε
= lim

ε↓0

P(X > 1
ε
)

ε
= f(0)

by the symmetry of f and l’Hopital’s rule. Hence fY = f on R.

4. Let X1 and X2 be independent standard normal random variables, and let U be a
random variable that is uniformly distributed on the interval [0, 1] and independent
of both X1 and X2. We define Z = UX1 + (1 − U)X2. Compute the mean and
variance of Z.

Solution: We compute the conditional distribution of Z given U = u. In this case,
Z = uX1 + (1 − u)X2 is just a linear combination of independent Normal random
variables, which is Normal. Observe that

E(Z |U = u) = uE(X1 |U = u) + (1− u)E(X2 |U = u) = 0

and

Var(Z |U = u) = u2 Var(X1 |U = u) + (1− u)2 Var(X2 |U = u) = u2 + (1− u)2.
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Therefore, we have shown that Z |U = u ∼ N(0, u2 + (1− u)2). Finally, to finish the
problem we invoke the laws of total expectation and total variance:

E(Z) = E(E[Z |U ]) = E(0) = 0,

and

Var(Z) = Var(E(Z |U)) + E(Var(Z |U))

= Var(0) + E[U2 + (1− U)2] = 0 + E(U2) + E[(1− U)2] = 2
3
.

5. Suppose X1, . . . , Xn are independent and identically distributed random variables
taking positive values. Find

E
[
X1 + · · ·+Xk

X1 + · · ·+Xn

]
for k = 1, . . . , n.

Solution: Define Ri := Xi

X1+···+Xn
for i = 1, . . . , n. Since the Xi are positive, Ri takes

its value in (0, 1) and consequently 0 < E[Ri] < 1 < +∞. In addition, the Ri are
identically distributed, so E[Ri] does not depend on i. Since

∑n
i=1Ri ≡ 1 we have

1 = E[
∑n

i=1Ri] =
∑n

i=1 E[Ri] so E[Ri] = 1/n. We conclude that

E
[
X1 + · · ·+Xk

X1 + · · ·+Xn

]
=

k∑
i=1

E
[

Xi

X1 + · · ·+Xn

]
=

k∑
i=1

E[Ri] =
k

n
.

Alternative solution:

For any ij, j = 1, . . . , k, satisfying 1 ≤ i1 < · · · < ik ≤ n, define

Rii,...,ik :=

∑k
j=1Xij∑n
i=1Xi

.

Since the Xi’s are i.i.d., the Rii,...,ik ’s are identically distributed. Then, by the linearity
of expectation,

E
[
X1 + · · ·+Xk

X1 + · · ·+Xn

]
=

∑
i1,...,ik

E[Rii,...,ik ](
n
k

) = E

[∑n
i=1

(
n−1
k−1

)
Xi(

n
k

)∑n
i=1Xi

]

=

(
n−1
k−1

)(
n
k

) =
k

n
.
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6. Suppose X is a continuous random variable having probability density function
f(x) = e−x for x > 0 (with f(x) = 0 for x ≤ 0). Compute

P(bXc = n and X − bXc ≤ x)

for n ∈ {0, 1, . . .} and x ∈ [0, 1]. Then answer with justification: Is it true that bXc
and X − bXc are statistically independent?

FYI: bXc is the greatest integer less than or equal to X.

Solution: For integer n ≥ 0 and x ∈ [0, 1] we have

P(bXc = n and X − bXc ≤ x) =

∫ n+x

n

e−u du = e−n − e−n−x = (1− e−x)e−n.

Call this result (*). Setting x = 1 in (*) we find

P(bXc = n) = (1− e−1)e−n,

and summing (*) over n we find

P(X − bXc ≤ x) =
∞∑
n=0

P(bXc = n and X − bXc ≤ x)

=
∞∑
n=0

(1− e−x)e−n = (1− e−x)
∞∑
n=0

e−n =
1− e−x

1− e−1
.

Therefore, we’ve shown

P(bXc = n and X − bXc ≤ x) = P(bXc = n)P(X − bXc ≤ x);

so, yes, bXc and X − bXc are statistically independent.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Fall Session
Linear Algebra

Thursday, August 22, 2024

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Suppose A is the n × n matrix all of whose columns are zero except for the i-th
column, which is a column of 1’s. If B is similar to A show that B is idempotent.

Solution: It is easy to check that A2 = A. If B is similar to A we have PBP−1 = A
for some invertible matrix P and it follows that

PB2P−1 = PBP−1PBP−1 = A2 = A = PBP−1.

Multiplying on the left by P−1 and on the right by P yields B2 = B.

2. Suppose A is the n× (n+ 1) matrix of the form

1 1 0 0 0 0 · · · 0
0 1 1 0 0 0 · · · 0
0 0 1 1 0 0 · · · 0
0 0 0 1 1 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1 1 0
0 0 0 0 · · · 0 1 1


so that the i-th row of A has a 1 in positions i and i + 1, for i = 1, . . . , n, and the
remaining entries of A are 0. Describe all possible solutions to the system of equations
Ax = y, where y is the n-vector whose i-th entry is 2i− 1 for i = 1, . . . , n.

Solution: First, observe that 2i− 1 = (i− 1) + i for all i ∈ [n]. Therefore,

xp =


0
1
...
n


is a particular solution. Then by elementary column operations, A can be reduced to

Ā =
(
In

... b

)
where

b =


(−1)n−1

(−1)n−2

...
1

 .

2



Therefore the kernel of A is given by

ker(A) =

c


(−1)0

(−1)1

...
(−1)n

 : c ∈ R


and the set of solutions can be expressed as

{xp + x0 : x0 ∈ kerA}.

3. Suppose A is an n×n matrix with right inverse B. Show that B is also a left inverse
A.

Hint: For any x show that if y = BAx then y = x.

Solution: For any x, take y = BAx. We proceed to show that y = x to give the
conclusion that BA = I. Observe that Ay = A(BAx) = (AB)Ax = IAx = Ax so
A(y − x) = 0.. To complete the proof we just have to show that ker(A) = {0} i.e.,
that the columns of A are linearly independent.

Let the columns of A be denoted by a(1), . . . , a(n). Since AB = I, we have

b1ia
(1) + · · ·+ bnia

(n) = e(i) for i = 1, . . . , n.

Since the vectors e(i), i = 1, . . . , n, span Rn, the columns of A span Rn as well, and
since there are n of them and dim(Rn) = n they must be linearly independent.

4. Define left-shift and right-shift transformations on Rn by

L(x1, x2, . . . , xn−1, xn) = (x2, x3, . . . , xn−1, xn, 0)

and
R(x1, x2 . . . , xn−1, xn) = (0, x1, x2, x3, . . . , xn−1),

and take V to be the vector space consisting of all linear combinations of compositions
of these transformations.

What is the dimension of V ?

Solution: Every composition of maps L and R sends the vector (x1, . . . , xn) to a
vector of the form

(0, . . . , 0︸ ︷︷ ︸
p

, xk, xk+1, . . . , xk+m−1, 0, . . . , 0︸ ︷︷ ︸
q

)

3



for some choice of nonnegative integers p, q, m, and k with p + q + m = n and
1 ≤ k ≤ n− (m− 1), and conversely, any such map can be expressed as a (right-to-
left) composition of maps L and R, namely

RpLn−mRn−k−m+1.

In particular, for every pair 1 ≤ j, k ≤ n there is a composition that maps (x1, . . . , xn)
to

(0, . . . , 0︸ ︷︷ ︸
k-1

, xj, 0, . . . , 0︸ ︷︷ ︸
n-k

).

In terms of its action on the standard basis {e(1), . . . , e(n)} of Rn, the space V contains
every map Tj,k defined by

Tj,k

(
n∑

i=1

xie
(i)

)
= xje

(k),

i.e., by

Tj,k(e(i)) =

{
e(k) if i = j

0 otherwise

for some choice of 1 ≤ j, k ≤ n. Since any linear linear transformation from Rn to
Rn can be expressed as a linear combination of such transformations, the dimension
of V is n2.

Alternative solution:

Define L,R ∈ Rn×n as follows:

L =

(
0n−1,1 In−1

0 01,n−1

)
, R = L>.

Then it is easy to check that for all x ∈ Rn we have

L(x) = Lx, R(x) = Rx.

Therefore, dim(V ) = dim(V̄ ) where

V = span
{
M1 · · ·Mk : k ∈ N+ and Mi ∈ {L,R} for all i ∈ [k]

}
⊆ Rn×n.

For any i, j ∈ [n], let Ei,j =

(
1{k = i and l = j}

)
k,l

; we know that Rn×n =

span {Ei,j : i, j ∈ [n]}. Notice that

Ln−iRn−1Lj−1 = Ln−iRn−1
(

0n−j+1,j−1 In−j+1

0j−1,j−1 0j−1,n−j+1

)
= Ln−i ( 0n,j−1 e(n) 0n,n−j

)
= Ei,j = E>j,i =

(
Ln−iRn−1Lj−1)> = Rj−1Ln−1Rn−i,

equivalent to the key observation in the previous solution. Therefore, V = Rn×n and
dim(V ) = n2.

4



5. Suppose n × n matrices A and B are simultaneously diagonalizable. Show that
AB = BA.

Solution: Simultaneous diagonalizability gives the existence of an invertible matrix P
such that PAP−1 = DA and PBP−1 = DB where DA and DB are diagonal matrices.
Since diagonal matrices commute, we have

AB = P−1DAPP
−1DBP = P−1DADBP = P−1DBDAP = P−1DBPP

−1DAP = BA.

6. Suppose A is a n × n matrix for which SAS−1 = λA for some nonsingular n × n
matrix S and λ 6= 0. Show that either Am = 0 for some positive integer m or λm = 1
for some positive integer m.

Hint: Consider the minimal polynomial of A.

Solution: For any nonnegative integer k we have

(SAS−1)k = SAkS−1

and it follows that for any polynomial p we have

p(SAS−1) = Sp(A)S−1.

Taking p(x) = xm + cm−1x
m−1 + · · · c1x + c0 to be the minimal polynomial of A, we

have p(A) = 0 and p(λA) = p(SAS−1) = Sp(A)S−1 = S0S−1 = 0. Thus

Am + cm−1A
m−1 + · · ·+ c1A+ c0I = 0 (1)

and
λmAm + cm−1λ

m−1Am−1 + · · ·+ c1λA+ c0I = 0. (2)

Multiplying (1) by λm and subtracting (2) from it we obtain q(A) = 0, where

q(x) = cm−1(λ
m − λm−1)xm−1 + · · ·+ c1(λ

m − λ)x+ c0(λ
m − 1). (3)

Since p is the minimal polynomial, q must be the zero polynomial, i.e., cj(λ
m−λj) = 0

for j = 0, . . . ,m− 1. If cj = 0 for j = 0, . . . ,m − 1, then p(x) = xm giving Am = 0.
Otherwise, cj 6= 0 for some j, in which case λm − λj = 0 so λm−j = 1 since λ 6= 0.
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