
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Spring Semester
Real Analysis

Tuesday, January 16, 2024

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let f : [0, 1]→ R be a Riemann integrable function satisfying∫ 1

0

|f(x)| dx = 0.

(a) Use the definition of continuity to show that if f is continuous then f = 0.

(b) Give an example of a discontinuous function f that satisfies the assumptions of
the problem but f 6= 0.

Solution:

(a) Assume f 6= 0; then there exists x ∈ [0, 1] such that |f(x)| = a > 0. By
continuity there exists δ > 0 such that, if |y − x| < δ, then |f(x)− f(y)| < a/2.
Then |f(y)| > a/2 for all y in the open ball B(x, δ). Therefore∫ 1

0

|f(x)|dx =

∫
B(x,δ)

|f(x)|dx+

∫
[0,1]\B(x,δ)

|f(x)|dx ≥ δ
a

2
+ 0 > 0.

This is a contradiction. Therefore f = 0.

(b) Consider the function

f(x) =

{
1 if x = 0

0 if x ∈ (0, 1]

This function is Riemann integrable since it is piecewise continuous with only
one point of discontinuity, but it is obviously not vanishing since f(0) = 1.

2. Consider the function f : R2 → R defined as

f(x, y) =

{
xy
x2+y

if x2 6= −y
0 if x2 = −y.

Show that all directional derivatives at (0, 0) exist but f is not differentiable at (0, 0).

Solution: If e = (e1, e2) with e2 6= 0, then as t→ 0 with t 6= 0 we have

1

t
f(te1, te2) =

1

t

t2e1e2
t2e21 + te2

=
e1e2

te21 + e2
→ e1.
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If instead e2 = 0, then as t→ 0 we have

1

t
f(te1, te2) =

1

t
f(te1, 0) = 0→ 0.

Therefore, each directional derivative exists at (0, 0), but f is not continuous. For
instance, consider y = −x2 + x3 with x 6= 0 and x → 0. Then (x, y) → (0, 0) but
f(x, y) = (−x3 + x4)/x3 → −1 6= 0 = f(0, 0).

Solution #2: Consider the smooth function g(x, z) = z − x2 and note that

F (x, z) = f(x, g(x, z)) =

{
x− x2

z
z 6= 0

0 z = 0.

F is clearly not a differentiable or even a continuous function at (x, z) = (0, 0), but it
would have to be so by the chain rule if f were differentiable at (x, y) = (0, 0). This
proves that f is in fact not differentiable at (x, y) = (0, 0).

Solution #3: If f is differentiable at (0, 0), then the directional derivative in direction
e = (e1, e2) must be a linear function of e. However,

Def =

{
e1, e2 6= 0

0, e2 = 0

is not a linear function of e.

3. Let X be a topological space and consider a function f : X → X. (You may not
assume that X is a metric space for this problem.)

(a) Define what it means for f to be continuous.

(b) Let A be a subset of X. Define what it means for A to be compact.

(c) Show that f(A) is compact if f is continuous and A is compact.

Solution:

(a) f : X → X is continuous iff for every open set U ⊂ X we have that f−1(U) is
open in X.

(b) A ⊂ X is compact if every cover of A by open sets has a finite subcover.

(c) Let {Ui}i∈I be a cover of f(A) by open sets. Take Vi = f−1(Ui) for i ∈ I. It’s
easy to see that {Vi}i∈I is a cover of A, since for any a ∈ A the image f(a) ∈ Ui
for at least one i and thus a ∈ Vi for at least that i. Clearly, Vi = f−1(Ui) is
open for all i ∈ I by part (a). Since A is compact, there is a finite subcover
A ⊂ ∪nk=1Vik . Therefore f(A) ⊂ ∪nk=1Uik .
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4. Give an example of a closed and bounded set (in some metric space) that is not
compact. Prove all your claims.

Solution: Many solutions are possible. For instance, take R with the metric d(x, y) =
min{|x−y|, 1}. Note that with this metric, the entire real line is closed and bounded,
but it is not compact. To see this last claim, consider the collection of open sets
(n − 3

4
, n + 3

4
) with n ∈ Z. This collection covers the real line, but no subcollection

does.

5. Show that the sequence
√

2,
√

2
√

2,

√
2
√

2
√

2, . . . converges and find its limit.

Solution: We can write the sequence as x1 =
√

2, xn+1 =
√

2xn. One can check:

• xn < 2 for all n by induction on n.

• xn+1 > xn for all n by the previous result.

Therefore the sequence is convergent. To find the limit x, one can solve x =
√

2x,
which implies that the limit is either 0 or 2. Since the sequence is increasing and
greater than

√
2, then the limit is 2.

6. (a) By direct calculation, determine at precisely what points (x0, y0) ∈ R2 you can
solve the equation F (x, y) = y2 + y + 3x+ 1 = 0 for y as a unique, continuously
differentiable real-valued function f defined for x in a neighborhood of x0 so that
y0 = f(x0).

(b) Check whether your answer to part (a) agrees with the answer you expect from
the implicit function theorem. Compute dy/dx.

Solution:

(a) Solving the quadratic equation we get

y =
−1±

√
1− 4(3x+ 1)

2
=
−1±

√
−3(1 + 4x)

2
.
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Therefore y is a continuously differentiable function of x if 1 + 4x < 0, i.e., if
x < −1/4. The quadratic formula with the + sign defines a smooth function
for y > −1/2, while this formula with the − sign defines a smooth function for
y < −1/2. When x = −1/4 we have the point (−1/4,−1/2) where y is not a
differentiable function of x. For x > −1/4 no real points of the form (x, y) satisfy
F (x, y) = 0. Thus, we conclude that any (x0, y0) ∈ R2 satisfying x0 < −1/4 and
y0 6= −1/2 meets the conditions stated in the problem.

(b) The implicit function theorem says that if (x0, y0) satisfies F (x0, y0) = 0 and
∂F (x,y)
∂y

∣∣∣
(x,y)=(x0,y0)

6= 0, then y is given by an implicit function y = f(x) for x

in a neighborhood of x0 such that f(x0) = y0. Note that ∂F/∂y = 2y + 1 6= 0
precisely when y 6= −1/2. On the solution set where F = 0 note further that

x = −1
3
(1 + y + y2) = −1

4
− 1

3

(
y + 1

2

)2 ≤ −1
4
, and x = −1

4
only if y = −1

2
.

Thus, the implicit function theorem implies that points (x0, y0) ∈ R2 where
an implicit function exists will be precisely those satisfying x0 < −1/4 and
y0 6= −1/2, consistent with the previous direct solution.

Note that dy/dx = −∂F/∂x
∂F/∂y

= − 3
2y+1

= ∓
√

3
−(1+4x)

.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Spring Semester
Probability

Wednesday, January 17, 2024

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Suppose X1 and X2 are independent Poisson random variables with means λ1 and λ2
respectively. Determine the conditional distribution of X1 given that X1 +X2 = n.

Solution: Let X3 = X1 +X2. Since X3 is a sum of two Poisson random variables, it
is also Poisson, with parameter λ1 + λ2:

P (X3 = n) =
(λ1 + λ2)

ne−λ1−λ2

n!
.

For P (X1 = k | X1 +X2 = n), we have:

P (X1 = k | X1 +X2 = n) =
P (X1 = k,X2 = n− k)

P (X3 = n)
.

Since X1 and X2 are independent,

P (X1 = k,X2 = n− k) = P (X1 = k)P (X2 = n− k) =
λk1e

−λ1

k!

λn−k2 e−λ2

(n− k)!
.

Combining the above,

P (X1 = k | X1 +X2 = n) =

(
n

k

)
λk1λ

n−k
2

(λ1 + λ2)n
.

Note that this is the distribution of a Binomial
(
n, λ1

λ1+λ2

)
random variable.

2. Let Sn be the number of successes in n tosses of a bent coin whose success probability
is p. Prove a weak law of large numbers for Sn

n
, i.e., show that Sn

n
converges to p in

probability as n→∞.

Solution: Let q = 1− p. Note that Sn is a binomial random variable with mean np
and variance npq. Hence, Sn

n
has mean p and variance pq

n
. By Chebyshev’s inequality,

we have

P

(∣∣∣∣Snn − p
∣∣∣∣ > ε

)
≤ pq

nε2

for any ε > 0. Hence, for any ε > 0,

lim
n→∞

P

(∣∣∣∣Snn − p
∣∣∣∣ > ε

)
= 0,
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completing the proof.

Solution #2: Note by definition that Sn = 1
n

∑n
i=1Xi, where X1, . . . , Xn are inde-

pendent Bernoulli random variables with mean p. Thus, each Xi has characteristic
function

E[eitXi ] = peit + (1− p) = p(eit − 1) + 1,

and

E[eitSn/n] =
[
1 + p(eit/n − 1)

]n
=

[
1 +

ipt

n
+O

(( t
n

)2)]n
→ eipt as n→∞.

Thus, Sn/n converges in distribution to a constant value p as n→∞, which implies
convergence of Sn/n in probability to p.

3. We start with a stick of length L. We break it at a point which is chosen randomly
and uniformly over its length, and keep the piece that contains the left end of the
stick. We then repeat the same process with the stick that we keep. After breaking
twice, what are the expected length and variance of the stick we are left with?

Solution: Let Y be the length of the stick after we break it for the first time. Let X
be the length after the second time. We have E[X | Y ] = Y/2, since the breakpoint
is chosen uniformly over the length Y of the remaining stick. For a similar reason,
we also have E[Y ] = L/2. Thus,

E[X] = E[E[X|Y ]] = E

[
Y

2

]
=

1

2
· L

2
=
L

4
.

Since Y is uniformly distributed between 0 and L,

var(E[X|Y ]) = var

(
Y

2

)
=

1

4
· L

2

12
=
L2

48
.

Since X is uniformly distributed between 0 and Y , we have

var(X|Y ) =
Y 2

12
.

Thus, since Y is uniformly distributed between 0 and L,

E[var(X|Y )] =
1

12

∫ L

0

1

L
y2dy =

L2

36
.
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Using the law of total variance, we obtain

var(X) = var(E[X|Y ]) + E[var(X|Y )] =
7L2

144
.

Solution #2: Following the notations of the previous solution, the pdf of Y is

pY (y) =

{
1/L 0 < y < L
0 otherwise

and the conditional pdf of X given Y is

pX|Y (x|y) =

{
1/y 0 < x < y
0 otherwise

.

Thus, for x ∈ [0, L],

pX(x) =

∫
pX|Y (x|y)pY (y)dy

=
1

L

∫ L

x

dy

y

=
1

L
ln

(
L

x

)
,

and for all other x we have pX(x) = 0.

Thus,

E(X) = L

∫ L

0

x

L
ln

(
L

x

)
dx

L
= −L

∫ 1

0

u lnu du = −L ·
(

1

2
u2 lnu− 1

4
u2
)∣∣∣∣1

0

=
1

4
L,

and also

E(X2) = L2

∫ L

0

x2

L2
ln

(
L

x

)
dx

L
= −L2

∫ 1

0

u2 lnu du = −L2·
(

1

3
u3 lnu− 1

9
u3
)∣∣∣∣1

0

=
1

9
L2,

so that

var(X) = E(X2)− [E(X)]2 =
L2

9
− L2

16
=

7L2

144
.

4. Let n > 3.

(a) Suppose a fair coin is flipped n times. Let pn be the probability that there are
at most 3 heads. Find pn as a simple function of n.
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(b) Suppose a fair coin is flipped until heads appears 3 times. Let qn be the proba-
bility that it takes at least n flips (including the flip resulting in the 3rd head).
Find qn as a simple function of n.

(c) Which of the following holds: pn > qn, pn = qn, pn < qn? Justify your answer.

Solution:

(a) The number of heads X is a binomial random variable. Adding together the
probability that X = 0, 1, 2, 3, we obtain

pn =
1

2n

[
1 + n+

(
n

2

)
+

(
n

3

)]
.

(b) Consider the first n flips of the coin. (We can imagine that we continue to flip
the coin.) The specified event occurs if and only if (i) there are at most 2 heads
in the first n flips, or (ii) there are are 3 heads in the first n flips with the last
one occurring in the nth flip. The last case occurs with probability 1

2n−1

(
n−1
2

)
· 1
2
.

Thus

qn =
1

2n

[
1 + n+

(
n

2

)
+

(
n− 1

2

)]
.

(c) By direct comparison, noting
(
n
3

)
= (n−1)(n−2)

2
· n
3
>
(
n−1
2

)
, we have pn > qn.

Alternatively, the event in (b) is strictly contained in the event in (a), with the
set difference being the event of positive probability that there are 3 heads in
the first n− 1 flips and the nth flip is a tail.

5. Let 0 < p < 1 and let X be a random variable such that

P (X = 1) = p, P (X = −1) = 1− p.

Let Y be a random variable whose conditional distribution given X is normal with
mean X and variance 4, that is, Y |X ∼ N(X, 4).

(a) Conditioned on Y = y, what is the distribution of X? Simplify your answer.

(b) What is the variance of Y ?

Solution:
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(a) By Bayes’s rule, letting pY |X be the conditional density of Y given X we have

P (X = 1|Y = y) =
P (X = 1)pY |X(y|X = 1)

P (X = 1)pY |X(y|X = 1) + P (X = −1)pY |X(y|X = −1)

=
pe−

(y−1)2

8

pe−
(y−1)2

8 + (1− p)e−
(y+1)2

8

=
p

p+ (1− p)e− y
2

P (X = −1|Y = y) =
P (X = −1)pY |X(y|X = −1)

P (X = 1)pY |X(y|X = 1) + P (X = −1)pY |X(y|X = −1)

=
(1− p)e−

(y+1)2

8

pe−
(y−1)2

8 + (1− p)e−
(y+1)2

8

=
1− p

pe
y
2 + (1− p)

.

(b) Note that

var(X) = E(X2)− (EX)2 = 1− (p− (1− p))2 = 1− (2p− 1)2 = 4p(1− p)

and that Y has the same distribution as X +Z where Z is normal with mean 0
and variance 4, independent of X. By additivity of variance,

var(Y ) = 4p(1− p) + 4.

Alternatively, using the explicit formula for the density

pY (y) =
1√
8π

[
pe−

(y−1)2

8 + (1− p)e−
(y+1)2

8

]
,

one can calculate that

E(Y ) = p− (1− p) = 2p− 1, E(Y 2) = (4 + 1)p+ (4 + 1)(1− p) = 5

and

var(Y ) = E(Y 2)− (EY )2 = 5− (4p2 − 4p+ 1) = 4 + 4p(1− p).

6. Let X, Y be random variables whose joint density function is

p(x, y) = 2ex−2y, x ≥ 0, y ≥ x.

Let U , V be independent random variables whose distributions are uniform over
(0, 1). Find an explicit continuous function f : (0, 1)2 → R2 such that f(U, V ) has
the same distribution as (X, Y ).
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Solution: Rewriting

p(x, y) = 2e−xe−2(y−x), x ≥ 0, y ≥ x

and noting that the transformation T (x, y) = (x, y − x) is volume-preserving (the

Jacobian is

∣∣∣∣ 1 0
−1 1

∣∣∣∣ = 1), we see that X and Y − X are independent exponential

random variables with rates 1 and 2, respectively. The cumulative distribution func-
tion of an exponential random variable with rate λ is Fλ(x) = 1− e−λx for x ≥ 0 and
Fλ(x) = 0 for x < 0. By inverse transform sampling, for a random variable Z with
continuous increasing cdf F : [0,∞] → R, Z has the same distribution as F−1(U)
where U is uniform in [0, 1]. This is because for z ≥ 0,

F (z) = P (U ≤ F (z)) = P (F−1(U) ≤ z)

Note U and 1−U have the same distribution, so alternatively, Z
d
= F−1(1−U). This

means that X has the same distribution as F−11 (1−U) = − lnU and Y −X has the
same distribution as F−12 (1−V ) = −1

2
lnV . Because X and Y −X are independent,

(X, Y −X)
d
=

(
− lnU,−1

2
lnV

)
,

or, equivalently,

(X, Y )
d
=

(
− lnU,− lnU − 1

2
lnV

)
.

Thus we can choose f(u, v) =
(
− lnu,− lnu− 1

2
ln v
)
.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Spring Semester
Linear Algebra

Thursday, January 18, 2024

Instructions: Read carefully!

1. This closed-book examination consists of 6 problems, each worth 5 points. Your
best five scores will be used to determine the exam grade. The passing grade is 2/3
of the total points. Partial credit will be given as appropriate; each part of a problem
will be given the same weight. If you are unable to prove a result asserted in one part
of a problem, you may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Consider the two real 3× 3 matrices

A =

 1 −1 0
−1 2 5
0 5 0

 , B =

 0 −6 1
−6 0 0
1 0 3

 .

Show that there is no basis for R3 which diagonalizes A and B simultaneously.

Solution: The existence of such a basis would imply that A and B commute, but

AB =

 6 −6 1
−7 6 14
−30 0 0

 , BA =

 6 −7 −30
−6 6 0
1 14 0

 .

2. If A is a square matrix with all eigenvalues real, prove that the matrix B = I+A+ 1
2
A2

is invertible.

Hint: Consider the Jordan canonical form of A.

Solution: The polynomial spectral theorem (an easy consequence of Jordan canonical
form) implies that the eigenvalues of B are exactly of the form µ = 1 + λ + 1

2
λ2 for

eigenvalues λ of A. However, the polynomial x2 + 2x+ 2 has only the complex roots
−1± i, and thus µ = 1 + λ+ 1

2
λ2 6= 0 for all real λ.

Alternative statement of the solution:

The matrix A has a Jordan canonical form, i.e., it is possible to write SAS−1 as a
matrix consisting of diagonal blocks of the form

λ 1 0 · · · 0 0
0 λ 1 0 · · · 0
0 0 λ 1 0 · · ·
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 0 · · · λ


,

with the possibility of a 1×1 block [λ] for each distinct eigenvalue, for some invertible
matrix S.

It follows that S(I +A+ 1
2
A2)S−1 = I + SAS−1 + 1

2
SAS−1SAS−1 which is a matrix

of diagonal blocks, one for each block in the Jordan form of A, where the block
corresponding to eigenvalue λ is upper triangular with diagonal entry 1 + λ+ 1

2
λ2. It

follows that S(I+A+ 1
2
A2)S−1 is upper triangular with these entries on the diagonal.

These diagonal entries are all nonzero since 1 + λ+ 1
2
λ2 is non-zero for all real values

of λ. So the matrix S(I + A+ 1
2
A2)S−1, and hence also I + A+ 1

2
A2, is invertible.

2



3. If W is the n × n matrix all of whose entries are ones and if I is the n × n identity
matrix, find the inverse matrix (I +W )−1.

Solution: # 1: A simple calculation gives W 2 = nW. Guessing that (I + W )−1 =
I + αW for scalar α, direct multiplication gives

(I + αW )(I +W ) = I + (nα + α + 1)W

so that α = −1/(n+ 1) gives the required inverse.

Solution # 2: Note that W = ww> where w is the n-dimensional column vector with
all components = 1. We can thus apply the Sherman–Morrison formula (A+uv>)−1 =

A−1 − A−1uv>A−1

1+v>A−1u
to obtain (I + ww>)−1 = I − ww>

1+w>w
= I − 1

1+n
W using w>w = n.

Solution # 3: We can express W as

W = V


n 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

V T

where V is orthonormal, specifically

V =

1/
√
n

... v2 v3 . . . vn
1/
√
n

 ,
with 1√

n
1, v2, . . . , vn orthonormal basis vectors. Hence

I +W = V


n+ 1 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

V T ,

which implies

(I +W )−1 = V


1/(n+ 1) 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

V T =
1

(n+ 1)n
11T + v2v

T
2 + · · ·+ vnv

T
N .
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Note that 11T = W , and letting v1 = [1/
√
n . . . 1/

√
n]T we get v2v

T
2 + · · ·+ vnv

T
n =

I − v1vT1 = I − 1
n
W . Finally,

(I +W )−1 =
1

(n+ 1)n
W + I − 1

n
W = I − n

(n+ 1)n
W = I − 1

n+ 1
W .

4. If A is a linear map from a vector space S to a vector space T with dim(S) > dim(T ),
then prove that the subspace of vectors x ∈ S such that Ax = 0 has dimension at
least dim(S)− dim(T ).

Solution: The subspace in question is KerA = (RanA∗)⊥ where A∗ : T → S
is the adjoint linear map. Since dim(RanA∗) ≤ dimT, we have dim(KerA) =
dim((RanA∗)⊥) = dim(S)− dim(RanA∗) ≥ dim(S)− dim(T ).

Solution # 2: The rank–nullity theorem gives

dim ker(A) + dim im(A) = dim(S),

and since im(A) is a subspace of T its dimension is at most dim(T ). So

dim ker(A) = dim(S)− dim im(A) ≥ dim(S)− dim(T ).

5. Assume that u, v are two vectors in Cn and consider the following possible assignments
of Euclidean norms:

(i) ‖u+ v‖ = 2, ‖u− v‖ = 2, ‖u+ iv‖ = 3, ‖u− iv‖ = 3
(ii) ‖u+ v‖ = 2, ‖u− v‖ = 2, ‖u+ iv‖ = 2, ‖u− iv‖ = 2.

For each assignment, either prove that it is impossible or find an illustrative example.

Solution: From the complex polarization identity

〈u, v〉 =
1

4

[
‖u+ v‖2 − ‖u− v‖2 − i‖u+ iv‖2 + i‖u− iv‖2

]
we see that the first condition (i) implies that u, v are orthogonal. However, in that
case all of the given norms must be equal to

√
‖u‖2 + ‖v‖2, so that assignment (i)

is inconsistent. Condition (ii) implies as well orthogonality of u, v, but in that case
any orthogonal vectors separately normalized to ‖u‖ = ‖v‖ =

√
2 will illustrate (ii).

4



6. If A is a Hermitian, positive-definite n× n matrix, B is an n×m matrix for m ≤ n
with full rank, and Om is the m×m zero matrix, then prove that the (n+m)×(n+m)
matrix C defined by

C =

(
A B
B∗ Om

)
is Hermitian with all eigenvalues non-zero.

Solution: Elementary calculation gives C∗ = C. Supposing that C has eigenvalue
0, then let z = (x, y)> be a corresponding eigenvector for n-dimensional x and m-
dimensional y. Then Cz = 0 is equivalent to

Ax+By = 0, B∗x = 0.

These equations give
x∗Ax = −x∗By = −(B∗x)∗y = 0.

Since A is positive-definite, the last equality implies x = 0 and 0 = Ax + By = By.
However, because B has full rank (all m columns linearly independent), then By = 0
implies y = 0. Since Cz = 0 implies z = 0, there is no 0 eigenvalue.

5


	IE40-RA-with solutions
	IE40-Probability-with-solutions
	IE40-LinAlg-With-Solutions

