
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Fall Session
Real Analysis

Monday, August 21, 2023

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. Partial
credit will be given as appropriate; each part of a problem will be given the same
weight. If you are unable to prove a result asserted in one part of a problem, you
may still use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit. However, hints are optional and solutions that don’t use the hints
are welcome too.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. (a) Compute limn→∞
n
√
n.

(b) For any x ∈ R show that limn→∞
xn

n!
= 0.

Note: If you use the fact that
∑∞

n=0
xn

n!
= ex, then you must prove that this

power series converges for all x ∈ R.

Solution: (a) Taking the natural logarithm,

lim
n→∞

ln( n
√
n) = lim

n→∞

lnn

n
= 0,

for example by l’Hôpital’s rule. Thus, limn→∞
n
√
n = 1.

(b) For any x ∈ R, take N = d|x|+ 1e. Then, for n > N,

|x|n

n!
=
|x|N

N !

n∏
k=N+1

|x|
k
<
|x|N

N !

(
|x|
|x|+ 1

)n−N

.

Since |x|
|x|+1

< 1, then limn→∞
|x|n
n!

= 0.

Alternatively, one can prove a stronger result that
∑∞

n=0
xn

n!
= ex <∞ for all x ∈ R.

Using Stirling’s approximation n! ∼
√

2πnnne−n we have

|x|
n
√
n!
∼ |x|

(2πn)
1
2n (n/e)

.

Since limn→∞(2πn)
1
2n = 1 by part (a), it follows that limn→∞

|x|
n√
n!

= 0 and thus the
Taylor series has infinite radius of convergence by the root test.

2. Prove that if f : [a, b] → R is a monotonically decreasing function in the compact
interval [a, b], then f is Riemann integrable in [a, b].

Hint: One possible way to solve this problem is by using the following definition of
Riemann integrable functions. For each uniform partition xi = a+ i∆n, i = 0, 1, ..., n
with ∆n = (b− a)/n, consider the partial sums

Un(f, a, b) :=
n−1∑
i=0

sup
x∈[xi,xi+1]

f(x) ·∆n, Ln(f, a, b) :=
n−1∑
i=0

inf
x∈[xi,xi+1]

f(x) ·∆n

and define the upper and lower Riemann integrals by

U(f, a, b) = inf
n
Un(f, a, b), L(f, a, b) = sup

n
Ln(f, a, b),
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A function is said to be Riemann integrable if L(f, a, b) = U(f, a, b). It may be helpful
to show that L(f, a, b) ≤ U(f, a, b) for all f and limn→∞[Un(f, a, b)− Ln(f, a, b)] = 0
for f monotone decreasing.

Solution: The result L(f, a, b) ≤ U(f, a, b) is proved by noting that for any n,m

Ln(f, a, b) ≤ Lnm(f, a, b) ≤ Unm(f, a, b) ≤ Um(f, a, b) (∗)

and then taking the supremum over n and the infimum over m.

It is thus enough to show that U(f, a, b) ≤ L(f, a, b). However, by monotonicity of f

Un(f, a, b) =
n−1∑
i=0

f(xi) ·∆n, Ln(f, a, b) =
n−1∑
i=0

f(xi+1) ·∆n

and subtracting gives

Un(f, a, b)− Ln(f, a, b) = (f(a)− f(b))∆n = (f(a)− f(b))(b− a)/n.

Because of the monotonicity of Un(f, a, b) in n expressed by (*), we can always choose
an increasing subsequence nk ↑ ∞ so that limk→∞ Unk

(f, a, b) = U(f, a, b) and thus

U(f, a, b) = lim
k→∞

Unk
(f, a, b) = lim

k→∞
[Unk

(f, a, b) + (f(b)− f(a))(b− a)/nk]

= lim
k→∞

Lnk
(f, a, b) ≤ sup

n
Ln(f, a, b) = L(f, a, b).

Alternative Solution: According to the Lebesgue-Vitali theorem, a bounded function
on a compact interval [a, b] is Riemann integrable if and only if it is continuous
almost everywhere, i.e., the set of its points of discontinuity has Lebesgue measure
zero. However, a monotone decreasing function f can have only a countable set Df

of points of discontinuity, since all of the intervals (f(x+), f(x−)) for x ∈ Df are
disjoint and contained in the interval (f(b), f(a)) so that∑

x∈Df

(f(x−)− f(x+)) ≤ f(a)− f(b) <∞.

Here the sum over x ∈ Df is interpreted as the supremum of the sums over finite
subsets of Df . Since a sum (in this sense) over an uncountable set of positive real
numbers must be infinite, we conclude from the finite upper bound that the set Df

must be countable. Thus, a monotone decreasing f is Riemann integrable.
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3. Show that the equation z3 + 2z + exp(z − x− y2) = cos(x− y + z) defines implicitly
a function z = f(x, y) near the point (0, 0, 0) where f is infinitely differentiable.
Compute the differential of f at (0, 0).

Solution: Since

F (x, y, z) = z3 + 2z + exp(z − x− y2)− cos(x− y + z)

is infinitely differentiable (C∞), the implicit function theorem implies that if

Fz(0, 0, 0) 6= 0,

then a C∞ function f is defined near (0, 0) so that F (x, y, f(x, y)) = 0 and

fx(x, y) = −Fx(x, y, f(x, y))

Fz(x, y, f(x, y))
, fy(x, y) = −Fy(x, y, f(x, y))

Fz(x, y, f(x, y))
.

Simple computations give

Fx(x, y, z) = − exp(z − x− y2) + sin(x− y + z)
Fy(x, y, z) = −2y exp(z − x− y2)− sin(x− y + z)
Fz(x, y, z) = 3z2 + 2 + exp(z − x− y2) + sin(x− y + z)

so that Fz(0, 0, 0) = 3 6= 0 and

fx(0, 0) = −(−1)/3 = 1/3, fy(0, 0) = −(0)/3 = 0.

4. Consider a sequence of nonnegative real numbers an, n ≥ 0. Show that

∞∏
n=0

(1 + an) converges if and only if
∞∑
n=0

an converges.

The following inequalities may be helpful, and can be used without proof:
x/2 ≤ log(1 + x) ≤ x for x ∈ [0, 2].

Solution: If
∑∞

n=0 an converges then limn→∞ an = 0, so that an ∈ [0, 2] for n ≥ N
with some sufficiently large N. In that case, for any M > N we have

ln

(
M∏

n=N

(1 + an)

)
=

M∑
n=N

ln(1 + an) ≤
M∑

n=N

an ≤
∞∑

n=N

an <∞.
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Since the sequence pM :=
∏M

n=N(1 + an) is thus bounded and non-decreasing, it has
a finite limit as M →∞.
Conversely, if

∏∞
n=0(1+an) converges, then likewise limn→∞ an = 0, so that an ∈ [0, 2]

for n ≥ N with some sufficiently large N. In that case, for any M > N we have

M∑
n=N

an ≤ 2
M∑

n=N

ln(1 + an) = 2 ln

(
M∏

n=N

(1 + an)

)
≤ 2 ln

(
∞∏

n=N

(1 + an)

)
<∞.

Since the sequence sM :=
∑M

n=N an is thus bounded and non-decreasing, it has a
finite limit as M →∞.

5. Denote by C[0, 1] the space of continuous functions f : [0, 1] → R and define the
subset F = {f ∈ C[0, 1] : ‖f‖ ≤ 1} with ‖f‖ := maxx∈[0,1] |f(x)|. Show that F is
closed and bounded in C[0, 1] in the norm topology. Is F compact or, equivalently,
sequentially compact?

Hint: The Arzelà-Ascoli theorem is one way to answer the compactness question.

Solution: By its definition, F is clearly bounded by 1.

Furthermore, a sequence fn ∈ F converges to f in C[0, 1] if and only if it con-
verges uniformly. In that case, for all x ∈ [0, 1], since |fn(x)| ≤ 1, one has |f(x)| =
limn→∞ |fn(x)| ≤ 1. Thus, ‖f‖ = maxx∈[0,1] |f(x)| ≤ 1 and f ∈ F . Therefore, F is
closed as well.

However, F is not compact, which is equivalent to sequential compactness for metric
spaces. By the Arzelà-Ascoli theorem, F is sequentially compact if and only if F
is uniformly bounded and uniformly equicontinuous. Clearly, fn(x) = sin(πnx) is
a subsequence in F but it is not uniformly equicontinuous since |fn(0) − fn( 1

2n
)| =

|0− 1| = 1 even though limn→∞
1
2n

= 0.

Note here that we are using only the easier half of the Arzelà-Ascoli theorem, i.e., that
uniform boundedness and uniform equicontinuity are necessary for sequential com-
pactness and not the deeper sufficiency statement. In fact, to answer the compactness
question in this problem we need to use only the fact that any sequence fn ∈ C[0, 1]
which converges uniformly to f ∈ C[0, 1] must be uniformly equicontinuous, and this
result follows easily from the triangle inequality

|fn(x)− fn(y)| ≤ |fn(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− fn(y)|.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Fall Session
Probability

Tuesday, August 22, 2023

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit. However, hints are optional and solutions that don’t use the hints
are welcome too.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. In a memory game, 2n cards containing the numbers 1, . . . , n, each appearing twice,
are shuffled and placed face down on the table. At each turn, you may pick two
cards, turn them face up, and if they match, remove them from the table. If they do
not match, they are placed face down again. The game is finished when all cards are
removed.

Suppose that instead of trying to remember the cards, you pick two cards indepen-
dently and uniformly at random each turn. (That is, each of the

(
2n
2

)
pairs is equally

likely to be chosen.) What is the expected number of turns before you finish the
game?

Solution: Let Xk denote the number of turns between the first time when there are
2k pairs on the table, and when the next pair is removed. When there are 2k pairs,
the probability of picking one pair is 1

2k−1 (no matter what the first card is, there is

probability 1
2k−1 that the other card will match). Thus Xk is a geometric random

variable with success probability 1
2k−1 , and has expected value 2k − 1. The number

of turns until the game finishes is
∑n

k=1Xk. By linearity of expectation,

E
n∑
k=1

Xk =
n∑
k=1

EXk =
n∑
k=1

(2k − 1) = n2.

2. Suppose that X and Y are independent exponential random variables with rates
λ and ν, respectively. The probability density function of an exponential random
variable with rate λ is λe−λx for x ≥ 0.

Find the cumulative distribution function and probability density function of max{X, Y }.

Solution: Note that the cdf for X and Y are 1 − e−λx and 1 − e−νx, respectively.
The cdf of max{X, Y } is

F (x) := P(max{X, Y } ≤ x) = P(X ≤ x, Y ≤ x) = P(X ≤ x)P(Y ≤ x)

= (1− e−λx)(1− e−νx), x ≥ 0,

and the pdf is

p(x) = F ′(x) = λe−λx + νe−νx − (λ+ ν)e−(λ+ν)x, x ≥ 0,

with F (x) = 0 and p(x) = 0 for x < 0.
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3. A bag has one blue and one red ball. At each step, a random ball is drawn from the
bag, with all balls equally likely to be chosen. The ball is then placed back in the bag
with another ball of the same color. This is repeated independently 10 times. What
is the probability that 4 red balls and 6 blue balls are drawn, in any order? Fully
simplify your answer.

Solution: More generally, suppose that r + b balls are drawn; we compute the
probability that r red balls and b blue balls are drawn. First consider the probability
that all the red balls are drawn first, and then all the blue balls are drawn. This
probability equals

1

2
· · · r

r + 1
· 1

r + 2
· · · b

r + b+ 1
=

r!b!

(r + b+ 1)!
.

To see this, note that the kth time the ball of a color is drawn, there are k balls of
that color in the bag; morever, the number of balls increases by 1 in each step. Next,
note that for any particular ordering of r red balls and b blue balls, the probability
is the same, as this only has the effect of permuting the numerators. Hence the total
probability equals(

r + b

r

)
r!b!

(r + b+ 1)!
=

(r + b)!

r!b!
· r!b!

(r + b+ 1)!
=

1

r + b+ 1
.

In our case, the answer is
1

11
.

4. For α, β > 0, the Gamma(α, β) distribution is the probability distribution supported
on [0,∞) with density function

p(u) =
βα

Γ(α)
uα−1e−βu.

(Here, Γ(z) =
∫∞
0
tz−1e−t dt, but the definition of Γ will not be necessary for this

problem; you may leave answers in terms of Γ.) Suppose that U is drawn from the
Gamma(α, β) distribution, we let σ = U−1/2, and then X1, . . . , Xn are drawn i.i.d.
from the distribution N(0, σ2). Compute the density function of U conditional on
X1 = x1, . . . , Xn = xn.
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Solution: The conditional density function of N(0, σ2) given U = u is proportional

to 1
σ
e−

x2

2σ2 = u1/2e−ux
2/2 for x ∈ R. By Bayes’s Rule,

pU |X1,...,Xn(u|x1, . . . , xn) =
pU(u)pX1,...,Xn|U(x1, . . . , xn|u)

pX1,...,Xn(x1, . . . , xn)

∝ uα−1e−βu ·
n∏
i=1

(
u1/2e−ux

2
i /2
)

∝ u(α+
n
2
)−1e−u(β+

1
2

∑n
i=1 x

2
i )

where we ignore constants that do not depend on u but may depend on x1, . . . , xn.
We recognize this as the Gamma(α+ n

2
, β+ 1

2

∑n
i=1 x

2
i ) distribution. Hence, including

the normalizing constant for the Gamma distribution, the required density is

pU |X1,...,Xn(u|x1, . . . , xn) =
(β + 1

2

∑n
i=1 x

2
i )
α+n

2

Γ(α + n
2
)

u(α+
n
2
)−1e−u(β+

1
2

∑n
i=1 x

2
i ).

5. At the Motor Vehicle Administration, there is an infinitely long line of people and a
single clerk. The amount of time in minutes that each customer takes at the counter
is an i.i.d. random variable with mean 10 minutes and standard deviation 2 minutes.
Customers are served continuously, one after the other.

Let Φ(z) =
∫ z
−∞

1√
2π
e−t

2/2 dt be the cumulative distribution function of a standard
Gaussian random variable. Let Sn be the amount of time in minutes that it takes to
serve the first n customers. Find a function f such that

lim
n→∞

P(Sn ≤ f(n)) = 0.05.

Your answer may involve Φ−1.

Solution: Let Xn be the amount of time taken by the nth customer. Then Sn =
X1 + · · ·+Xn. By the Central Limit Theorem,

Sn − 10n

2
√
n

d−→ N(0, 1).

Convergence in distribution means that

lim
n→∞

P
(
Sn − 10n

2
√
n
≤ z

)
= Φ(z).

Taking z = Φ−1(0.05) gives that

lim
n→∞

P
(
Sn ≤ 10n+ 2Φ−1(0.05)

√
n
)

= lim
n→∞

P
(
Sn − 10n

2
√
n
≤ Φ−1(0.05)

)
= 0.05.

Thus, we can take f(n) = 10n+ 2Φ−1(0.05)
√
n.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Fall Session
Linear Algebra

Wednesday, August 23, 2023

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit. However, hints are optional and solutions that don’t use the hints
are welcome too.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Suppose that X is a real, 4× 2 matrix and

XX> =


1 −1 1 2
−1 2 0 −1
1 0 ? ?
2 −1 ? ?

 .

Fill in the missing entries marked by “?”.

Solution: Since XX> must have rank 2, its last two columns must be linear combina-
tions of the first two columns. The coefficients of the linear combinations are easily
determined by the given entries as

1
0
?
?

 = 2


1
−1
1
2

+


−1
2
0
−1

 =


1
0
2
3

 ,


2
−1
?
?

 = 3


1
−1
1
2

+


−1
2
0
−1

 =


2
−1
3
5

 ,

so that

XX> =


1 −1 1 2
−1 2 0 −1
1 0 2 3
2 −1 3 5

 .

2. Calculate the matrix exponential etA for real t and matrix

A =

(
1 1
0 2

)
.

Solution: It is easy to show by induction that

An =

(
1 2n − 1
0 2n

)
, n ≥ 0,

and thus

etA =
∞∑
n=0

tnAn

n!
=

(
et e2t − et

0 e2t

)
.
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3. Prove for any real n×m matrix A that Ran(A>A) = Ran(A>), where Ran(B) denotes
the range of a given matrix B.

Solution: The result follows from

Ran(A>A) = {A>Ax |x ∈ Rm}
= {A>y | y ∈ Ran(A)}
= {A>(y + z) | y ∈ Ran(A), z ∈ Ker(A>)}
= {A>x |x ∈ Rn} since Rn = Ran(A)⊕Ker(A>)
= Ran(A>).

4. If U is a unitary complex n× n matrix such that I +U is invertible, then prove that

H = i(I + U)−1(U − I)

is Hermitian. Hint: Show that H∗ = i(U − I)(U + I)−1.

Solution: Since

U∗ − I = U−1 − I = (I − U)U−1, I + U∗ = I + U−1 = (U + I)U−1,

then

H∗ = −i(U∗ − I)(I + U∗)−1 = −i(I − U)U−1 · U(U + I)−1 = i(U − I)(U + I)−1.

Since U − I and U + I commute, then so do U − I and (U + I)−1. Thus,

H∗ = i(U − I)(U + I)−1 = i(I + U)−1(U − I) = H.

5. If A is a complex n× n matrix that is both normal and upper-triangular, then prove
that A is diagonal. Hint: Calculate (A∗A)11.

Solution: We prove the result by induction on n, starting with the obvious case n = 1.
Consider then a complex upper-triangular n× n matrix A and note that

(A∗A)11 = |a11|2, (AA∗)11 =
n∑

k=1

|a1k|2.
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Normality AA∗ = A∗A then gives

|a11|2 =
n∑

k=1

|a1k|2 =⇒ a1k = 0, k > 1.

Thus,

A =

(
a11 0>

0 A′

)
where 0 is the (n− 1)-dimensional column vector of zeros and A′ is (n− 1)× (n− 1).
Since it is easy to see that A′ is upper-triangular and normal, the induction hypothesis
that A′ is diagonal implies that A is diagonal.

4


	IE39-RA-With solutions
	IE39_ProbabilityWithSolutions
	IE39-LinAlgWithSolutions

