
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Real Analysis

Tuesday, August 23, 2022

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Suppose we have a sequence of real numbers ak such that
∑∞

k=1 |ak| converges. Prove
that

∑∞
k=1 a

2
k converges. Also show that the converse is false.

Solution: Since
∑∞

k=1 |ak| converges, limk→∞ |ak| = 0. Therefore, there exists an N
such |ak| < 1 for all k ≥ N . Consequently, 0 ≤ a2k ≤ |ak| < 1 for k ≥ N and

∞∑
k=1

a2k =
N−1∑
k=1

a2k +
∞∑
k=N

a2k

≤
N−1∑
k=1

a2k +
∞∑
k=N

|ak|,

so
∑∞

k=1 a
2
k converges by comparison.

For showing the converse is false consider ak = 1/k for which
∑∞

k=1 |ak| = +∞ but∑∞
k=1 a

2
k < +∞.

2. Suppose f : [0, 1]→ R is continuous. Prove e
∫ 1
0 f(x) dx ≤

∫ 1

0
ef(x) dx.

Hint: First consider Riemann sum approximations.

Solution: We can compute
∫ 1

0
f(x) dx as limn→∞

1
n

∑n
j=1 f( j−1

n
) , and

∫ 1

0
ef(x) dx in

similar fashion. Now,

e
∑n

j=1
1
n
f( j−1

n
) =

(
ef(0)ef(

1
n
)ef(

2
n
) · · · ef(

n−1
n

)
) 1

n

≤ 1

n

(
ef(0) + ef(

1
n
) + ef(

2
n
) + · · ·+ ef(

n−1
n

)
)

by the arithmetic–geometric means inequality. Since this holds for all n, passing to
the limit gives us the result.

Alternative solution: This is an immediate consequence of Jensen’s inequality applied
to the exponential function and the random variable f(U), where U is distributed
uniform(0, 1).
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3. Let f(x) = 1√
2π
e−

1
2
x2 denote the standard normal probability density function, and

let g(x) = 1
2
e−|x| denote the double exponential density function. Find the smallest

value of c > 0 such that f(x) ≤ cg(x) for all x ∈ R.

Solution: The condition

1√
2π
e−

1
2
x2 ≤ c

1

2
e−|x| for all x ∈ R

can be rewritten as
2√
2π
e−

1
2
x2+|x| ≤ c for all x ∈ R

so the minimum value of c is given by

sup
x

2√
2π
e−

1
2
x2+|x|.

To find the supremum, we maximize the exponent −1
2
x2+|x|. By symmetry, it suffices

to maximize over x ≥ 0, and for such x

−1

2
x2 + |x| = −1

2
x2 + x = −1

2
(x− 1)2 +

1

2
.

The maximum of this expression occurs when x = 1 yielding a maximum of 1
2
, giving

c =
2√
2π
e

1
2 =

√
2e

π
.

4. Suppose an > 0 for n = 1, 2, . . . and
∑∞

n=1 an < +∞. Prove that
∑∞

n=1 a
n/(n+1)
n < +∞.

Hint. Define
I =

{
n : an/(n+1)

n ≤ 2an
}
,

and show that for n /∈ I we have a
n/(n+1)
n < 1/2n.

Solution: If n /∈ I we have
an/(n+1)
n > 2an,

so that
ann > 2n+1an+1

n = 2n+1ana
n
n,
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and dividing both sides by 2n+1ann gives

an < 1/2n+1.

Consequently
an/(n+1)
n < 1/2n.

Breaking the sum of interest into two pieces,

∞∑
n=1

an/(n+1)
n =

∑
n∈I

an/(n+1)
n +

∑
n/∈I

an/(n+1)
n

≤
∑
n∈I

2an +
∑
n/∈I

1/2n

and these last two sums are finite.

5. Suppose gn : [0, 1]→ R is continuous function for n = 1, 2 . . . , with gn → g uniformly,
and define fn(x) =

∫ x
t=0

gn(t)dt. Show fn converges uniformly to a differentiable limit
function f and describe this function.

Solution: Since the functions gn are continuous, by uniform convergence the limit
g is also continuous and we can define define a function f(x) =

∫ x
t=0

g(t)dt. Observe
that this function is differentiable with f ′ = g.

We proceed to show uniform convergence of fn to f , i.e.,

sup
x∈[0,1]

|fn(x)− f(x)| → 0.

For this,

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

∣∣∣∣∫ x

t=0

gn(t)dt−
∫ x

t=0

g(t)dt

∣∣∣∣ = sup
x∈[0,1]

∣∣∣∣∫ x

t=0

gn(t)− g(t)dt

∣∣∣∣
≤ sup

x∈[0,1]

∫ x

t=0

|gn(t)− g(t)| dt =

∫ 1

t=0

|gn(t)− g(t)| dt.

The last equality follows from nonnegativity of the integrand. By uniform convergence
if ε > 0 there exists N such that for n ≥ N we have supt∈[0,1] |gn(t)− g(t)| ≤ ε so for

n ≥ N we have
∫ 1

t=0
|gn(t)− g(t)|dt ≤ ε.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Afternoon Exam–Probability

Tuesday, August 23, 2022

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 1:30 PM and end at 4:30 PM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Five (5) balls are dropped on a table that has 7 holes. Assuming each ball falls
independently into any of the 7 holes with equal probability, find the probability that
there is at least one hole into which more than one ball falls.

Solution: Call the desired event A. Then Ac is the event that each ball goes in a
distinct hole, and

P (Ac) =
7 · 6 · 5 · 4 · 3

75
.

Therefore, P (A) = 1− 7·6·5·4·3
75

=
2041

2401
≈ 0.85.

2. X and Y are independent standard normals, i.e., each have density ϕ(x) = e−
x2

2√
2π

.

Find the density of U = X
Y

.

Solution: The joint pdf of X and Y is f(x, y) = ϕ(x)ϕ(y) = 1
2π
e−

1
2
(x2+y2) for

(x, y) ∈ R2. We’re told U =
X

Y
, so consider the mapping (x, y) 7→ (u, v) defined by

u =
x

y
, v = y from R2 to R2. This mapping is invertible and

x = uv and y = v

is the inverse mapping. The Jacobian determinant of this inverse is

J := det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
= det

[
v u
0 1

]
= v.

Therefore, the joint pdf of U and V is

g(u, v) = f(x, y) · |J | = f(uv, v) · |v| = |v|
2π
e−

1
2
(u2v2+v2) =

|v|
2π
e−

v2[u2+1]
2 .

We now find the marginal gU(u) for U : Fix any u ∈ R; then

gU(u) =
1

2π

∫ ∞
−∞
|v|e−

v2[u2+1]
2 dv

=
2

2π

∫ ∞
0

v e−
v2[u2+1]

2 dv (next substitute w = 1+u2

2
v2, dw = [1 + u2]v dv)

=
1

π

∫ ∞
0

1

1 + u2
e−w dw =

1

π(1 + u2)
,

the standard Cauchy density.
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3. Two (2) people each toss a fair coin until they observe the trial number of their first
head. Let X (resp., Y ) represent the trial of person 1’s (resp., person 2’s) first head.
Compute E(X|X < Y ), i.e., the conditional expectation of X given X < Y .

Solution: First of all,

E(X|X < Y ) =
∞∑
k=1

k · P (X = k|X < Y )

=
∞∑
k=1

k · P (X = k,X < Y )

P (X < Y )

=
∞∑
k=1

k · P (X = k, k < Y )

P (X < Y )

=
∞∑
k=1

k · P (X = k)P (Y > k)

P (X < Y )
.

Since P (X < Y ) = P (Y < X) we have 2P (X < Y ) + P (X = Y ) = 1. Now,

P (X = Y ) =
∞∑
k=1

P (X = k, Y = k) =
∞∑
k=1

P (X = k)P (Y = k) =
∞∑
k=1

(1

2

)2k
=

1

3
.

Therefore, P (X < Y ) = (1 − 1
3
)/2 = 1

3
. Lastly, P (X = k) = P (Y > k) =

(
1
2

)k
.

Substituting this information into our calculation above we have

E(X|X < Y ) =
∞∑
k=1

k · 3

4

(1

4

)k−1
=

4

3
,

since the summation represents the mean of a geometric random variable with success
probability 3

4
.

4. X and Y are independent random variables each having mean 0 and variance 1. Find
a value c such that P [(X + Y )2 ≥ c] is at most .2.

Solution: Note that, by independence, E[(X + Y )2] = E[X2 + 2XY + Y 2] =
E[X2] + 2E[X]E[Y ] + E[Y 2] = 2. Therefore, by Markov’s inequality,

P [(X + Y )2 ≥ c] ≤ E[(X + Y )2]

c
=

2

c
≤ 0.2
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exactly when c ≥ 10.

5. Let A and B be mutually exclusive events such that P (A) = p and P (B) = q with
0 < p+ q < 1. An experiment consists of repeated independent trials where on each
trial we observe whether A, B, or (A ∪ B)c occurred. Compute the probability that
A occurs before B.

Solution: If we let Ai, Bi and Ci represent the events of A, B and Ac∩Bc, respectively,
occurring on trial i, then the event that A occurs before B is the event

A1 ∪ (C1 ∩ A2) ∪ (C1 ∩ C2 ∩ A3) ∪ · · · =
∞⋃
i=1

(
Ai ∩

i−1⋂
k=1

Ck

)
.

Since the events in this union are mutually exclusive and events with differing sub-
scripts are independent, the probability of this event is

= P (A1) + P (C1 ∩ A2) + P (C1 ∩ C2 ∩ A3) + · · ·
= p+ (1− p− q)p+ (1− p− q)2p+ · · ·
=

p

1− (1− p− q)
=

p

p+ q
.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Linear Algebra

Wednesday, August 24, 2022

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Consider the symmetric tridiagonal matrix An with 2 on the main diagonal and 1 on
its first off-diagonal. For example, when n = 4, the matrix in question is

A4 =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

 .

(a) Compute the determinant of A4 above, and show that this matrix is invertible.

(b) Find a recurrence relation for the determinant of An, and solve it to find the
general expression. Conclude that An is invertible for all n ≥ 1.

Solution: (a) Expanding by minors, we find that det(A4) = 5.

(b) An approach by induction works well, since

An =


2 1

1
. . .

An−1

. . .

 .

Now det(A1) = 2, and det(A2) = 3, so expanding by minors along the first column, we
see that det(A3) = 2det(A2)− 1det(Ã2), where Ã2 is the matrix A2 with its first row
replaced by [1, 0]. This equals 2(3) − 1(2) = 4. In general, det(An) = 2det(An−1) −
1det(Ãn−1), and det(Ãn) = det(An−1). So we obtain det(An) = 2det(An−1) −
1det(An−2), which is a second-order recurrence relation an = 2an−1 − an−2, with
a1 = 2, a2 = 3. This has the simple solution an = n + 1, which one could easily
guess from the first few values: indeed, we get 2n− (n− 1) = n+ 1, as claimed. So
det(An) = n+ 1 for all n, and this determinant is never 0.

2. Consider the following statement: Let A ∈ Rm×n, b ∈ Rm, and suppose there are two
distinct solutions x1, x2 ∈ Rn to the system Ax = b. Then there is some c ∈ Rm for
which there is no solution to Ax = c.
Either prove that the statement is true for all m and n, or find a counterexample for
some m and n.

Solution: Here is a simple example for the case n = 2m: Consider A = [Im, Im], and
any b ∈ Rm. Then [bT , 0Tm]

T and [0Tm, b
T ]T are distinct solutions to Ax = b, but A

2



clearly has full column rank. In particular, given any c ∈ Rm, the vector x = [cT , 0Tm]
T

solves Ax = c.

For completeness, we now consider the case of general m and n. If n ≤ m, then
rank(A) = n − nullity(A) < n ≤ m, so there is some c ∈ Rm for which there is
no solution to Ax = c. If n > m, consider A = [I |A′], where A′ ∈ Rm×(n−m) is
any matrix. Then nullity(A) = n − rank(A) = n − m > 0, so the nullspace of A
is nontrivial; further, im(A) = Rm. Thus for any b ∈ Rm there are two distinct
solutions to the system Ax = b. But there is no c ∈ Rm for which there is no solution
to Ax = c, so we have produced the desired counterexample.

3. Suppose A ∈ Rn×n satisfies A2 = 2A− I. Show that the characteristic polynomial of
A is (t− 1)n.

Solution: The given condition says that (A−I)2 = 0. Thus, the minimal polynomial
of A divides (t− 1)2, so the only possible eigenvalue of A is 1. Since A has order n,
its characteristic polynomial must be (t− 1)n.

4. Let A,B ∈ Rn×n be symmetric matrices, and suppose B is positive semidefinite. We
say that A is positive semidefinite with respect to B if for any x ∈ Rn with xTBx ̸= 0,
we have xTAx ≥ 0. Let B1/2 be the unique symmetric positive semidefinite square
root of B.

Show that if A and B are symmetric, B is positive semidefinite, and A is positive
semidefinite with respect to B, then B1/2AB1/2 is positive semidefinite. [Hint: Reduce
to the case where B is diagonal, then consider the quadratic form associated to
B1/2AB1/2.]

Solution: Let A be symmetric and let B be symmetric positive definite with spectral
decomposition B = UΛUT , where U is a real orthogonal matrix and Λ is a diagonal
matrix with nonnegative entries. It is straightforward to argue that A is positive
semidefinite with respect to B if and only if the symmetric matrix UAUT is positive
semidefinite with respect to Λ. Another straightforward argument then establishes
that it is sufficient to prove the desired result in the case that B is a diagonal positive
semidefinite matrix. For this, we may suppose that the first k diagonal entries of B
are strictly positive and the last n− k diagonal entries vanish, where 0 ≤ k ≤ n.

To prove that B1/2AB1/2 is positive semidefinite, we show that yTB1/2AB1/2y ≥ 0
for any vector y. This nonnegativity is an immediate consequence of the positive

3



semidefiniteness of A with respect to B. Indeed, if x = B1/2y, then xTBx = yTB2y ̸=
0 if and only if at least one of y1, . . . , yk is nonzero; on the other hand, if y1 = · · · =
yk = 0, then B1/2y = 0 and yTB1/2AB1/2y = 0.

Remark: The converse holds under the condition that im(A) ⊆ im(B). If B1/2AB1/2

is positive semidefinite, then yTAy ≥ 0 for any y ∈ im(B). From the condition
that im(A) ⊆ im(B), we see that null(B) = im(B)⊥ ⊆ im(A)⊥ = null(A). Then
for any vector x ∈ Rn with xTBx ̸= 0, decomposing x = y + z with y ∈ im(B) and
z ∈ null(B), we must have z ∈ null(A), too. So xTAx = (y+z)TA(y+z) = yTAy ≥ 0
since y ∈ im(B).

5. Consider a matrix of the form

A(x) =

[
1 xT

x In

]
,

where x ∈ Rn. Give a necessary and sufficient condition for A(x) to be invertible.

Solution: The necessary and sufficient condition for A(x) to be invertible is that
∥x∥ ≠ 1.

Method 1: Suppose ∥x∥ = 1. Then y = [1,−xT ]T satisfies A(x)y = 0, so A(x) is
not invertible. If ∥x∥ ≠ 1, we note that A(0) = In+1 is clearly invertible, so we may
consider ∥x∥ ≠ 1, x ̸= 0. For any y = [c, vT ]T , if A(x)y = 0, then (i) c + xTv = 0,
which implies that c = −xTv; and (ii) cx + v = 0. So (xTv)x = v, implying that
v and x are linearly dependent. If v = ax, this last equation reads a∥x∥2x = ax,
or equivalently, a(∥x∥2 − 1)x = 0, which is impossible unless a = 0 since ∥x∥ ̸= 1
and x ̸= 0. But a = 0 implies that v = 0, so c = 0 and y = 0. That is, A(x) is
nonsingular. So A(x) is nonsingular if and only if ∥x∥ ≠ 1.

Method 2: Clearly, the last n columns of A(x) are linearly independent, so A(x) is
not invertible if and only if the first column can be expressed as a linear combination
of the others. Letting c0, . . . , cn denote the columns of A(x) then solving

c0 = u1c1 + · · ·+ uncn

for ui ∈ R, we see that a solution exists if and only if ui = xi for i = 1, . . . , n, and
1 =

∑n
i=1 uixi, i.e., if and only if 1 =

∑n
i=1 x

2
i . So A(x) is nonsingular if and only if

∥x∥ ≠ 1.
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