
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Winter Session
Morning Exam–Real Analysis

Tuesday, January 18, 2022

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Suppose f : R → R is a one-to-one function. Show that there exists x such that
f(x2) < f(x)2 + 1

4
.

Solution: If, on the contrary, we have f(x2) ≥ f(x)2 + 1
4

for all x, then in particular
we have f(0) ≥ f(0)2 + 1

4
and f(1) ≥ f(1)2 + 1

4
. But then

0 ≥ f(0)2 − f(0) +
1

4
=

(
f(0)− 1

2

)2

,

so f(0) = 1
2
. Similarly, if f(1) ≥ f(1)2 + 1

4
, then f(1) = 1

2
. Since f is a one-to-one

function we have a contradiction.

2. Show that
1

n

n∑
k=1

log k ≤ log(n + 1)− log 2

for any positive integer n.

Solution: We have

1

n

n∑
k=1

log k =
1

n
log

(
n∏

k=1

k

)
= log

(
n∏

k=1

k1/n

)
,

and by the arithmetic/geometric-mean inequality and monotonicity of log this is
bounded above by

log

(
1

n

n∑
k=1

k

)
= log

(
n + 1

2

)
.

3. For a real-valued sequence x1, x2, . . . define the partial sums

Sn =
n∑

i=1

xi for n = 0, 1, 2, . . .

(with S0 := 0). Assume limn→∞ Sn = s where s ∈ R. Prove that

lim
n→∞

1

n

n∑
k=1

kxk = 0.
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Hint: Start by proving the following summation-by-parts identity:

1

n

n∑
k=1

kxk = Sn −
1

n

n−1∑
k=0

Sk.

Solution: We start by proving the identity in the hint:

n∑
k=1

kxk =
n∑

k=1

(
k−1∑
i=0

1

)
xk =

n−1∑
i=0

(
n∑

k=i+1

xk

)
=

n−1∑
i=0

(Sn − Si) = nSn −
n−1∑
k=0

Sk.

Now apply Cesàro’s theorem to the identity to conclude that

1

n

n∑
k=1

kxk → s− s = 0,

as desired.

4. Suppose f and g are continuous real-valued functions defined on [0, 1] with

max
x∈[0,1]

f(x) = max
x∈[0,1]

g(x).

Show there exists x∗ ∈ [0, 1] such that

f(x∗) = g(x∗).

Solution: Let M be the common maximum value of the two functions. Since f and
g are continuous, there exist u, v ∈ [0, 1] such that f(u) = M and g(v) = M. Choose
one such pair (u, v). If u = v we can take x∗ to be this common point. If f(v) = M we
can take x∗ = v and if g(u) = M we can take x∗ = u. It remains to consider the case
when u 6= v, f(v) < M , and g(u) < M. Then we have f(u) − g(u) = M − g(u) > 0
and f(v)−g(v) = f(v)−M < 0. Since f −g is continuous, by the intermediate value
theorem there exists x∗ between u and v such that f(x∗)− g(x∗) = 0.
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5. Let sn denote the nth partial sum of an alternating series, i.e., sn =
∑n

i=1(−1)i+1ui,
where un, n = 1, 2, . . . , is a nonnegative monotone non-increasing sequence satisfying
limn→∞ un = 0. Prove that the sequence sn, n = 1, 2, . . . , converges.

Solution: We are told sN =
∑N

n=1(−1)n+1un, where un ≥ 0 for all n with un monotone
non-increasing and limn→∞ un = 0.

Observe that s2n − s2n−2 = u2n−1 − u2n ≥ 0 for all n. This shows that s2n forms a
monotone non-decreasing sequence. In addition,

s2n = u1 − (u2 − u3)− (u4 − u5)− · · · − (u2n−1 − u2n)

so s2n ≤ u1 for all n.

We have a bounded monotone sequence and therefore it converges, say

lim
n→∞

s2n = s.

On the other hand, s2n+1 = s2n +u2n+1. Since limn→∞ un = 0, both sequences on the
right converge and we conclude that

lim
n→∞

s2n+1 = s + 0 = s.

Therefore
lim
n→∞

sn = s.

4



Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Winter Session
Afternoon Exam–Probability

Tuesday, January 18, 2022

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 1:30 PM and end at 4:30 PM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. In how many ways can 10 identical tokens be distributed among 4 children if the
eldest must receive at least 2 of these tokens?

Solution: If we think of the distribution of these 10 tokens among the 4 children as a
vector of nonnegative integers of length 4—so that (x1, x2, x3, x4) means the youngest
receives x1 tokens, the second youngest receives x2 tokens, and so on—then we want
to count the number of such vectors whose last entry is at least 2 and whose entries
sum to 10. This is the same as giving the eldest 2 tokens, and counting the number
of nonnegative integer solutions to x1 + x2 + x3 + x4 = 8. This is just the number of
weak compositions of the integer 8, which is

(
8+4−1
4−1

)
=
(
11
3

)
= 165.

2. There are 6 people (numbered 1, 2, . . . , 6) in a room. Among these 6 people, 3
are left-handed and the others are right-handed. Independently for each i from 1
through 6, you toss a fair coin. If the coin comes up heads you shake person i’s hand;
otherwise, you do not shake their hand. Given you shook the hands of all the left-
handed people, compute the probability you tossed exactly k heads for each integer
k from 0 through 6.

Solution: Without loss of generality let’s assume persons 1,2, and 3 are left-handed.
We can recast the problem as follows: Given that the first three tosses of a fair coin
are heads, what’s the probability we toss k heads total in six tosses? If k = 0, 1, 2
the answer is 0. If k = 3, 4, 5, or 6, then this is the same as tossing k − 3 heads in 3

tosses, the probability of which is
( 3
k−3)
8

. Explicitly, the answers are 0, 0, 0, 1/8, 3/8,
3/8, 1/8 for k = 0, 1, 2, 3, 4, 5, 6, respectively.

3. Suppose X is uniformly distributed over the unit interval [0, 1]. Derive the pdf of
U = X

1+X
.

Solution: The distribution of U is concentrated on the interval [0, 1
2
]. So, for 0 ≤ u ≤

1
2
, the cdf of U is

FU(u) = P
( X

1 +X
≤ u

)
= P (X ≤ u+ uX) = P

(
X ≤ u

1− u

)
=

u

1− u
.
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Consequently, the pdf of U is

f(u) =

{ 1
(1−u)2

if 0 ≤ u ≤ 1
2

0 otherwise
.

4. We have a box filled with 2m marbles: two marbles in each of m different colors.
Uniformly at random and without replacement, someone selects k marbles, where
1 ≤ k ≤ 2m. Compute the expected value of the number of colors selected.

Solution: For i = 1, 2, . . . ,m, we let Xi = 1 if color i is in the selection and Xi = 0
otherwise. ThenX =

∑m
i=1Xi counts the number of colors in the selection. Moreover,

by linearity of expectation,

E(X) =
m∑
i=1

E(Xi) =
m∑
i=1

P (Xi = 1) =
m∑
i=1

(1− P (Xi = 0))

=
m∑
i=1

(
1−

(
2
0

)(
2m−2

k

)(
2m
k

) )
= m

(
1−

(
2m−2

k

)(
2m
k

) ) .

5. The following function is known to be a moment generating function:

M(θ) = (1 + θ2)eθ
2/2, −∞ < θ < ∞.

Suppose X is a random variable having M(θ) as its moment generating function.

For each integer k ≥ 1, compute the kth moment E(Xk).

3



Solution: Expand the moment generating function:

M(θ) = (1 + θ2)eθ
2/2 = (1 + θ2)

∞∑
m=0

1

m!

(θ2
2

)m
= (1 + θ2)

∞∑
m=0

1

m!2m
θ2m

=
∞∑

m=0

1

m!2m
θ2m +

∞∑
m=0

1

m!2m
θ2(m+1)

= 1 +
∞∑

m=1

1

m!2m
θ2m +

∞∑
m=1

1

(m− 1)!2m−1
θ2m

= 1 +
∞∑

m=1

2m+ 1

m!2m
θ2m

= 1 +
∞∑

m=1

(2m+ 1)!

m!2m
θ2m

(2m)!
.

From here we can directly read off the moments. Since M(θ) is an even function,

E(Xk) = 0 when k ≥ 1 is odd. When k = 2m is even, E(X2m) = (2m+1)!
m!2m

.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Winter Session
Morning Exam–Linear Algebra

Wednesday, January 19, 2022

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. A positive semidefinite matrix A ∈ Rn×n has a Cholesky factorization as A = LLT ,
where L ∈ Rn×n is lower triangular. Show that when A is positive definite, it also
has a loChesky factorization as A = UUT , where U ∈ Rn×n is upper triangular.

Hint: You may use without proof that the inverse of an upper triangular matrix is
also upper triangular.

Solution: A−1 is positive definite, so it has a Cholesky factorization as A−1 = LLT .
We see that L and LT are also invertible, since detA−1 = (detL)

(
detLT

)
, and thus

neither of detL and detLT may equal 0. Then A = (LT )−1L−1, where LT is an upper
triangular matrix, and thus (LT )−1 is, too. Since (LT )−1 = (L−1)T , this gives the
desired factorization as A = UUT with U = (L−1)T .

2. Suppose A and B are symmetric positive definite n× n real matrices.

(a) Is it true that A and B must commute? If so, prove it or give a counterexample.

(b) Assume A and B commute and xTAx ≤ xTBx for all x ∈ Rn. Show that det(A) ≤
det(B). You may suppose that A has distinct eigenvalues if needed for your proof.

Solution: (a) A and B need not commute and it is not very challenging to come up
with examples for n = 2. For example, for n = 2 consider

A =

[
3 1
1 3

]
and

B =

[
1 0
0 2

]
,

both of which are symmetric and strictly diagonally dominant, hence positive definite.
But (AB)12 = 2 while (BA)12 = 1, so A and B do not commute. If n = 1, then
A and B must of course commute. If n ≥ 3, then a counterexample is obtained by
taking the direct sum of each A and B with the (n− 2)-dimensional identity matrix.

(b) Approach 1 (not using distinct eigenvalues, and not using commutativity!): The
quadratic-forms inequality shows that B−A is symmetric positive semidefinite. The
eigenvalues of A, B−A, and B are all nonnegative real numbers. Order the eigenval-
ues of A as λ1 ≤ · · · ≤ λn and those of B as ω1 ≤ · · · ≤ ωn. By Weyl’s inequalities, for
each i = 1, . . . , n we have ωi ≥ λi + µ1 ≥ λi > 0, where µ1 is the smallest eigenvalue
of B − A. Since det Λ =

∏n
i=1 λi and detB =

∏n
i=1 ωi, the result follows.
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Approach 2 (not using distinct eigenvalues): Since A and B are real and symmetric
and they commute, they can be simultaneously orthogonally diagonalized, i.e., there
exists a real orthogonal matrix P such that P TAP = Λ and P TBP = Ω, where Λ is
a diagonal matrix with diagonal entries λ1, . . . , λn and Ω is a diagonal matrix with
diagonal entries ω1, . . . , ωn. Taking x = Pe(i) where e(i) is the standard unit vector
we obtain

xTAx = e(i)TP TPΛP TPe(i) = e(i)TΛe(i) = λi,

and similarly xTBx = ωi. So λi ≤ ωi for i = 1, . . . , n. Also, since A and B are positive
definite, we have λi > 0 and ωi > 0 for i = 1, . . . , n. The proof now proceeds as in
Approach 1.

Approach 3 (using distinct eigenvalues): A and B are commuting diagonalizable
matrices, hence simultaneously diagonalizable, so there exists an invertible matrix S
with S−1AS = Λ and S−1BS = Ω. The first equation may be re-written as AS = SΛ,
so we see that the ith column of S is an eigenvector of A with eigenvalue λi. But since
A has distinct eigenvalues, the eigenspace associated to each λi is one-dimensional.
Further, since A has a set of n orthonormal eigenvectors {p1, . . . , pn}, we see that each
column of S must be a nonzero scalar multiple of one of these pi’s, and thus S = PD,
where D is a diagonal matrix with nonzero diagonal entries and P is the matrix
whose columns are p1, . . . , pn. Then A = SΛS−1 = PDΛD−1P−1 = PΛP T , where
P−1 = P T since the columns of P are an orthonormal set, and similarly B = PΩP T .
We may now proceed as in Approach 2.

3. Suppose A ∈ R5×5 is an invertible matrix such that A and A−1 are similar.

(a) Show that A− A−1 is similar to A−1 − A.

(b) Use this to conclude that at least one of ±1 is an eigenvalue of A.

Solution: (a) Using the given condition that A = SA−1S−1 for some invertible
S ∈ Rn×n, we may invert both sides of this equation to see that we also have A−1 =
SAS−1. Combining these, we have

A− A−1 = SA−1S−1 − SAS−1 = S(A−1 − A)S−1.

(b) We want to show that at least one of A− I and A+ I is singular; or equivalently,
that (A − I)(A + I) = A2 − I = A(A − A−1) is singular; or, equivalently, that
A − A−1 is singular. By part (a), each eigenvalue of A − A−1 is also an eigenvalue
of A−1 − A = −(A− A−1), with matching multiplicities. That is, the multiplicity of
any eigenvalue λ of A−A−1 is the same as the multiplicity of −λ as an eigenvalue of
A − A−1. Since the order of A is 5, which is odd, there must be some eigenvalue of
A− A−1 with λ = −λ, meaning that λ = 0.

3



4. Let A =

[
a b
b c

]
be a symmetric real matrix, and suppose that the following matrices

have the same eigenvalues:

A⊙ A =

[
a2 b2

b2 c2

]
, A2 =

[
a b
b c

]2
.

Show that A is diagonal.

Solution: Since the eigenvalues are the same, the traces are equal. This gives a2+c2 =
a2+2b2+ c2, when we carry out the multiplication in A2. Thus b2 = 0, implying that
b = 0 and A is diagonal.

5. Compute the orthogonal projection matrix onto the subspace of R3 spanned by the
vectors 11

1

 ,

21
1

 .

Solution: We first find an orthonormal basis for this subspace and its orthogonal
complement using Gram–Schmidt orthogonalization:

w1 = [1, 1, 1]T

v1 = [1, 1, 1]T/
√
3

w2 = [2, 1, 1]T − ⟨[2, 1, 1]T , v1⟩v1 = [2, 1, 1]T − [4/3, 4/3, 4/3]T = [2/3,−1/3,−1/3]T

v2 = [2,−1,−1]T/
√
6

v3 = [0, 1,−1]T/
√
2

Method 1:

P = v1v
T
1 + v2v

T
2 =

1

3

1 1 1
1 1 1
1 1 1

+
1

6

 4 −2 −2
−2 1 1
−2 1 1

 =

1 0 0
0 1/2 1/2
0 1/2 1/2

 .

Method 2:

P = I − v3v
T
3 = I − 1

2

0 0 0
0 1 −1
0 −1 1

 =

1 0 0
0 1/2 1/2
0 1/2 1/2

 .
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