
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Winter Session

Tuesday, January 24, 2017

Instructions: Read carefully!

1. This closed-book examination consists of 15 problems, each worth 5 points. The
passing grade has been set at 50 points, i.e., 2/3 of the total points. Partial credit
will be given as appropriate; each part of a problem will be given the same weight.
If you are unable to prove a result asserted in one part of a problem, you may still
use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been grouped by topic, but there are roughly equally many
mainly motivated by each of the three areas identified in the syllabus (linear algebra;
real analysis; probability). Nor have the problems been arranged systematically by
difficulty. If a problem directs you to use a particular method of analysis, you must
use it in order to receive substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. The examination will begin at 8:30 AM; lunch and refreshments will be provided.
The exam will end just before 5:00 PM. You may leave before then, but in that case
you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Prove that a continuous function f : [0, 1]→ R satisfies∫ 1

0

f(x)ψ(x) dx =

∫ 1

0

f(x) dx

∫ 1

0

ψ(x) dx

for all continuous functions ψ : [0, 1]→ R if and only if f is constant.

Solution: If f(x) ≡ c is constant, then∫ 1

0

f(x)ψ(x) dx = c

∫ 1

0

ψ(x) dx =

∫ 1

0

f(x) dx

∫ 1

0

ψ(x) dx,

as desired. We present three proofs for the converse.

Proof #1: By continuity of f it suffices to prove that f is constant on (0, 1). We will

show that f(x0) =
∫ 1

0
f(x) dx for each x0 ∈ (0, 1).

Fix the value x0. It is easy to construct a sequence of nonnegative continuous
functions ψn : [0, 1] → R vanishing outside the interval (x0 − n−1, x0 + n−1) such

that
∫ 1

0
ψn(x) dx = 1. [For example, one can suitably center and scale the function

φ : R→ R defined by

φ(x) := exp

{
−
(

1− 4
∣∣x− 1

2

∣∣2)−1}1 (0 < x < 1) .]

We then have

f(x0) = lim
n→∞

∫ 1

0

f(x)ψn(x) dx = lim
n→∞

[∫ 1

0

f(x) dx

∫ 1

0

ψn(x) dx

]
=

∫ 1

0

f(x)dx,

where the first equality follows from the assumed continuity of f , the second from
the stated assumption, and the third from the fact that each ψn integrates to 1.

Proof #2: We work in the Hilbert space L2[0, 1] and denote the function with constant
value 1 by 1. Choosing ψ = f gives the third equality in the following:

‖f‖2‖1‖2 =

[∫ 1

0

f 2(x) dx

] [∫ 1

0

1 dx

]
=

∫ 1

0

f 2(x) dx =

[∫ 1

0

f(x) dx

]2
= 〈f,1〉2.

Because we have inequality in the Cauchy–Schwarz inequality, it follows that f ∈ L2

is a scalar multiple of 1, i.e., that f is almost surely constant. But f is continuous,
so f is constant.
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Proof #3: Assume the identity true for all continuous ψ. Take ψ such that ψ(x) =
x− a on [0, a) and ψ(x) = 0 on [a, 1], with a ∈ (0, 1). The assumption implies that∫ a

0

f(x)(x− a) dx = −a
2

2

∫ 1

0

fdx.

Since f is continuous, the left-hand side is differentiable in a, and computing deriva-
tives yields

−
∫ a

0

f(x) dx = −a
∫ 1

0

f(x) dx.

Taking another derivative implies

f(a) =

∫ 1

0

f(x) dx.

This is true for all a ∈ (0, 1), and can be extended to a = 0 and a = 1 by continuity.
This proves that f is constant.

2. Let A and B be two n× n real matrices. Show that if AB = 0 then

rank(A) + rank(B) ≤ n.

Solution: It follows from AB = 0 that range(B) ⊆ null(A). Therefore,

rank(A) + rank(B) ≤ dim(range(A)) + dim(null(A)) = n.

3. Let A and B be n×m real matrices. Prove that a necessary and sufficient condition
that there exists an m×m real matrix C such that AC = B is that the column space
of B is a subspace of the column space of A. (The column space of a matrix is the
vector space spanned by its columns.)

Solution: Write A as A = [a1 a2 · · · am] and B as B = [b1 b2 · · · bm]. The column
space of B is a subspace of the column space of A if and only if each bj is a real
linear combination of the columns of A, i.e., if and only if for each j = 1, 2, . . . ,m
there exist real cij (i = 1, 2, . . . ,m) such that bj =

∑m
i=1 aicij, i.e., if and only if there

exists an m×m real matrix C = [cij] such that AC = B.
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4. Prove that there is a unique solution f of the integro-differential equation

f ′(x) = f(x) +

∫ 1

0

f(y) dy, x ∈ R,

with f twice-differentiable and f(0) = 1, and find that solution.

Solution: Suppose first that f is a solution. Differentiating both sides of the integro-
differential equation gives

f ′′(x) = f ′(x),

whose general solution is f(x) = Aex +B. Then

f ′(x) = Aex = f(x)−B,

so that

−B =

∫ 1

0

f(y) dy = A(e− 1) +B,

implying

B = −e− 1

2
A.

Furthermore,
f(0) = A+B = 1,

yielding

A =
2

3− e
, B = −e− 1

3− e
and thus finally

f(x) =
2ex − (e− 1)

3− e
.

Conversely, if f is defined by this formula, then f is twice-differentiable with f(0) = 1,
and f satisfies the integro-differential equation.

5. Let f : R→ R be a differentiable function that satisfies f ′(x) ≤ 1
2

for all x.

Prove that f has a unique fixed point, that is, that there exists one and only one real
value a such that f(a) = a.
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Solution: First we show that f has a fixed point a. To that end, let g(x) := f(x)−x.
We seek a value a such that g(a) = 0. Suppose, for contradiction, that no such value
exists. Then g > 0 or g < 0.

Note that g′(x) = f ′(x)− 1 ≤ −1
2
.

By the mean value theorem we have, for all x 6= y, that

g(x)− g(y)

x− y
= g′(z) ≤ −1

2
,

where z is some value between x and y.

If g > 0, then for x > 0 we have

0 <
g(x)

x
=
g(x)− g(0)

x− 0
+
g(0)

x
≤ −1

2
+
g(0)

x
, (∗)

which is clearly false for x sufficiently large.

If g < 0, then for x < 0 the result (∗) again holds, and this time we obtain a
contradiction by considering x→ −∞.

Therefore f has a fixed point a.

Note that f can have at most one fixed point because if b is another fixed point, then
by the mean value theorem we have, for some value c between a and b, that

1 =
a− b
a− b

=
f(a)− f(b)

a− b
= f ′(c) ≤ 1

2
,

which is a contradiction.

6. Find the radius of convergence of the power series
∑∞

n=1
xn

n3n
, and then compute the

value of
∑∞

n=1
1
n3n

.

Solution: We use the root test: The key quantity r := limn→∞
n

√∣∣ xn
n3n

∣∣ equals |x|
3

,

which shows that the series is divergent for |x| > 3 and absolutely convergent for
|x| < 3. Therefore, the radius of convergence is 3.

Now let’s define for |x| < 3 the function f(x) :=
∑∞

n=1
xn

n3n
. We are asked to find

f(1). Clearly, f(0) = 0. Furthermore, recognizing a geometric series, we have

f ′(x) =
∞∑
n=1

xn−1

3n
=

1

3

∞∑
n=1

(x
3

)n−1
=

1

3

(
1

1− x
3

)
=

1

3− x
.

Consequently, the value of the series is

f(1) = f(1)− f(0) =

∫ 1

0

1

3− x
dx = − ln(3− x)|x=1

x=0 = ln(3/2).
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7. Show that if E and F are positive definite n× n matrices, then

det(E + F ) ≥ detE + detF.

You may use without proof the existence of a positive definite square root E1/2 of a
positive definite matrix E.

Solution: The key is to use the multiplicativity of determinant. It then follows that

det(E + F ) = detE · det(I + E−1F )

and that detE > 0 and

det(I + E−1F ) = det[E1/2(I + E−1F )E−1/2] = det(I + E−1/2FE−1/2).

But E−1/2FE−1/2 is clearly positive definite, and it is clear from consideration of
eigenvalues that det(I + C) ≥ 1 + detC for any positive semidefinite matrix C.
Putting the pieces together we find that

det(E + F ) ≥ (detE)[1 + det(E−1/2FE−1/2)] = (detE)

(
1 +

detF

detE

)
= detE + detF,

as desired.

8. Suppose X and Y are jointly continuous random variables having joint probability
density function (pdf)

f(x, y) =

{
x+ y, if 0 < x < 1 and 0 < y < 1;

0, otherwise.

Find the pdf fW of W := X + Y .

Solution: It’s easy to see that f is indeed a joint pdf, since it is nonnegative and
integrates to 1. For 0 < w < 1 we have

fW (w) =

∫ ∞
−∞

f(x,w − x) dx =

∫ w

0

f(x,w − x) dx =

∫ w

0

w dx = w2.
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For 1 ≤ w < 2 we have

fW (w) =

∫ ∞
−∞

f(x,w − x) dx =

∫ 1

w−1
f(x,w − x) dx =

∫ 1

w−1
w dx = w(2− w).

For w ≤ 0 or w ≥ 2 we have fW (w) = 0. In summary, the (unique continuous) pdf
of W is

fW (w) =


w2, if 0 < w < 1

w(2− w), if 1 ≤ w < 2

0, otherwise

.

9. Let fn:[0, 1]→ R, n ∈ N, be a sequence of continuous functions and let f :[0, 1]→ R
be another continuous function. Show that fn converges uniformly to f if and only
if for every sequence (xn)n∈N such that xn converges to some x ∈ [0, 1], we have
limn→∞ fn(xn) = f(x).

Solution: Let ‖ · ‖ ≡ ‖ · ‖∞ denote sup-norm, and note that fn converges uniformly
to f if and only if ‖fn − f‖ → 0.

(⇒) Assume that fn converges uniformly to f and let xn ∈ [0, 1], n ∈ N, be such that
xn → x for some x ∈ [0, 1]. Then

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| ≤ ‖fn − f‖∞ + |f(xn)− f(x)|.

In the limit as n→∞, the first term in the last bound vanishes by uniform conver-
gence and the second vanishes by the continuity of f (at x).

(⇐) Conversely, assume that for every sequence (xn) from [0, 1] such that xn → x for
some x ∈ [0, 1] we have

lim
n→∞

fn(xn) = f(x).

Write gn := fn − f for n ∈ N. We will show that

‖gn‖ → 0 along some subsequence. (∗)

Applying this result to each subsequence of (fn), it then follows that every subsequence
of (‖gn‖) has a further subsequence vanishing in the limit; hence ‖gn‖ → 0, as desired.

It remains to prove (∗). Since |gn| is continuous on the compact set [0, 1], there exists
yn ∈ [0, 1] such that

‖gn‖ = |gn(yn)|.
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By the Bolzano–Weierstrass theorem, there exists a subsequence (ynk
) of (yn) such

that ynk
→ x for some x ∈ [0, 1] as k →∞. Define

xn :=

{
yn, if n = nk for some k ∈ N;

x, otherwise.

Then xn → x, and so by assumption fn(xn) → f(x); further, f(xn) → f(x) by the
continuity of f . In particular,

‖gnk
‖ = |fnk

(ynk
)− f(ynk

)| = |fnk
(xnk

)− f(xnk
)| → |f(x)− f(x)| = 0,

yielding (∗).

10. Take N > 1 to be a positive integer and x1, . . . , xN to be real numbers. Let µ :=
1
N

∑N
i=1 xi and σ2 := 1

N

∑N
i=1(xi−µ)2. Suppose we draw I1 uniformly from {1, . . . , N}

and then, conditionally given I1 = i, we draw I2 uniformly from {1, . . . , N}\{i}.
Define Xi := xIi for i = 1, 2. Show that Cov(X1, X2) = −σ2/(N − 1).

Solution: We condition on I1 and use the law of total covariance:

Cov(X1, X2) = Cov(E(X1|I1),E(X2|I1)) + ECov(X1, X2 | I1).

Observe first that the conditional distribution of X1 given I1 = i1 is degenerate
at the value xi1 , and therefore E(X1|I1) = xI1 . Next, from the stated conditional
distribution of I2 given I1 we see that

E(X2|I1) =
Nµ− xI1
N − 1

.

Therefore, the first contribution to Cov(X1, X2) is

Cov(E(X1|I1),E(X2|I1)) = Cov

(
xI1 ,

Nµ− xI1
N − 1

)
= − 1

N − 1
Var xI1 = − σ2

N − 1
.

Further,
Cov(X1, X2 | I1) = Cov(xI1 , X2 | I1) = 0,

so the second contribution ECov(X1, X2 | I1) to Cov(X1, X2) vanishes. The desired
result follows.

Solution #2: The joint probability mass function of I1 and I2 is given by

P{I1 = i1, I2 = i2} =

{
1/[N(N − 1)], if i1 6= i2;

0, if i1 = i2,
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and from this we see that I1 and I2 are each uniformly distributed in {1, . . . , N}.
Now

EX1 =
N∑
i=1

P{I1 = i}xi =
N∑
i=1

1
N
xi = µ,

and since I2 has the same distribution as I1 we have EX2 = µ, as well. Further,

E[X1X2] =
1

N(N − 1)

∑
1≤i 6=j≤N

xixj

=
1

N(N − 1)

∑
1≤i,j≤N

xixj −
1

N(N − 1)

N∑
i=1

x2i

=
N

N − 1

N∑
i,j=1

xixj
N2
−

N∑
i=1

x2i
N(N − 1)

.

But
N∑

i,j=1

xixj
N2

= µ2

and
N∑
i=1

x2i
N(N − 1)

=
1

N − 1

N∑
i=1

x2i
N

=
1

N − 1
(σ2 + µ2).

So

E[X1X2] =
N

N − 1
µ2 − 1

N − 1
(σ2 + µ2) = − 1

N − 1
σ2 + µ2,

and we conclude

Cov(X1, X2) = E[X1X2]− E[X1]E[X2] = − 1

N − 1
σ2.

11. Let X denote the number of different days of the year that are birthdays of four
persons selected randomly. Calculate EX. You may assume that persons’ birthdays
are independent and uniformly distributed over 365 days of the year.

Solution: We first give a simple solution. For k = 1, 2, 3, . . . , 365, let Ik denote the
indicator of the event that day k is the birthday of at least one of the persons. Then
X = I1 + I2 + · · ·+ I365, and by linearity of expectation

EX = E[I1 + I2 + · · ·+ I365] = E I1 + E I2 + · · ·+ E I365
= 365E I1 = 365P{day 1 is the birthday of at least one of the four people}.
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By using complementation, this equals

365 [1− P{day 1 is not the birthday of any of the four people}] = 365

[
1−

(
364

365

)4
]
,

which, if calculated, is 3.98359. . . .

Solution #2: Computation of EX by means of the probability mass function (call
it p) for X is more difficult. Standard combinatorial arguments reveal that for an
N -day year and r people we have

p(k) = N−r
(
N

k

) ∑
c∈Cr,k

(
r

c

)
,

where the sum of k-nomial coefficients here is over the set Cr,k of all k-part compo-
sitions c = (c1, c2, . . . ck) of the integer r, that is, over k-tuples of (strictly) positive
integers summing to r. By the principle of inclusion–exclusion and the multinomial
formula, this sum equals

k−1∑
j=0

(−1)j
(
k

j

)
(k − j)r.

Thus

p(k) = N−r
(
N

k

) k−1∑
j=0

(−1)j
(
k

j

)
(k − j)r.

From this second formula for p(k) can be shown the general fact that the expectation∑r
k=1 k p(k) of X equals N [1− ((N − 1)/N)r]. We give a direct computational proof

in the case r = 4 (and N = 365) discussed in the problem using the second formula;
the first formula can also be used for this small value of r.

In this case we have p(k) = N−4
(
N
k

)
s(k) where

s(1) = 1,

s(2) = 16− 2 = 14,

s(3) = 81− 48 + 3 = 36,

s(4) = 256− 324 + 96− 4 = 24.

Thus

EX = N−4
[(
N

1

)
+ 28

(
N

2

)
+ 108

(
N

3

)
+ 96

(
N

4

)]
= N

[
1−

(
N − 1

N

)4
]
.
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12. Prove that there do not exist a number ε > 0 and a real matrix A that satisfy

A100 =

[
−1 0
0 −(1 + ε)

]
.

Solution: For a proof by contradiction, suppose that ε > 0 and that A is a matrix
with real entries that satisfies the equation [call it (∗)]. Let B := A50. Writing out the
equation that B2 equals the right side of (∗) entry by entry, we find that either B is a
real diagonal matrix, which is clearly impossible, or B is a real matrix with b22 = −b11
and determinant equal both to 1 and to 1 + ε, which is also clearly impossible.

Solution #2: For another proof by contradiction, suppose that ε > 0 and that A is
a matrix with real entries that satisfies (∗). We let a and b denote the eigenvalues
of A. It follows from (∗) that one of the eigenvalues, say a, satisfies

a100 = −1,

which means that a = x + iy ∈ C with y 6= 0. Also, since the coefficients of the
characteristic polynomial of A are functions of the real entries of A, they must also
be real. Thus, the eigenvalues of A must come in complex conjugate pairs, so that

b = ā = x− iy.

Since a and b are conjugate, they have the same magnitude; this may be used in
conjunction with (∗) to conclude that

1 = |a|100 = |b|100 = (1 + ε)100,

which is a contradiction. This completes the proof.

13. The ages of prospective married parents at a certain hospital can be approximated
by a bivariate normal distribution with parameters µX = 28.2, σX = 6.0, µY = 31.5,
σY = 7.0, and ρ = 0.80. (The parameters having label X refer to the pregnant women
and those with label Y to the prospective father. The quantities µ are means and
the quantities σ are standard deviations; ρ is the correlation.) For this hospital:

(a) Consider the proportion of pregnant women who are over 30. Is this proportion
closest to 10%, 40%, 60%, or 90%?

(b) Consider the proportion of prospective fathers aged 35 who have wives over 30.
Is this proportion closest to 10%, 40%, 60%, or 90%?
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Hint: Recall—no proof need be given—that if (X, Y ) has a bivariate normal distribu-
tion with means (µX , µY ), variances (σ2

X , σ
2
Y ), and correlation ρ, then the conditional

distribution of X given Y = y is normal with

mean µX|Y=y = µX + ρ
σX
σY

(y − µY ) and variance σ2
X|Y=y = σ2

X(1− ρ2).

You should not require a table of the normal distribution to solve this problem.

Solution:

(a) The desired proportion has the approximation

P(X > 30) = P
{
X − µX
σX

>
30− µX
σX

}
= P

{
Z >

30− 28.2

6.0

}
= P

{
Z >

1.8

6.0

}
= P{Z > 0.3} .= 40%.

(b) With y = 35, the conditional moments have approximate values

µX|Y=y = µX + ρ
σX
σY

(y − µY ) = 28.2 + (0.80)
6.0

7.0
(35− 31.5) = 30.6,

σ2
X|Y=y = σ2

X(1− ρ2) = (6.0)2[1− (0.80)2] = (3.6)2.

Thus the desired proportion has the approximation

P{X > 30 |Y = 35} .= P
{
Z >

30− 30.6

3.6

}
= P{Z > −1/6} .= 60%.

14. A vector x in Rn has length 6. A vector y in Rn has the property that for every pair
of real scalars a and b the vectors ax + by and 4bx − 9ay are orthogonal. Compute
the length of y and of 2x+ 3y.

Solution: For any scalars a and b we have

0 = 〈ax+ by, 4bx− 9ay〉 = 4ab〈x, x〉 − 9ab〈y, y〉+ (4b2 − 9a2)〈x, y〉. (∗)

In particular, choosing nonzero a and b in (∗) satisfying 4b2 = 9a2 and using the fact
that 〈x, x〉 = 36 we obtain 〈y, y〉 = 16, that is, the length of y is 4. Further, by
taking a = 1 and b = 0 in (∗) we find that 〈x, y〉 = 0. Therefore, 〈2x+ 3y, 2x+ 3y〉 =
4〈x, x〉+ 9〈y, y〉 = 144 + 144 = 2 ·144, implying that the length of 2x+ 3y is 12

√
2.
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15. Let X1 and X2 be independent normal random variables, each with mean zero but
(perhaps) different variances ν1 and ν2. Correspondingly, we write the probability
density function for Xj as ϕXj

(·) = ϕ(·; 0, νj). Derive the maximally-simplified closed-
form expression for

E[X1|X1 +X2 = s]

in terms of just s, ν1, and ν2.

Solution: Let S := X1 +X2 and ν := ν1 + ν2. Because X1 and X2 are independent
normal random variables, their distribution is bivariate normal, with mean vector
zero and diagonal covariance matrix diag[ν1, ν2]. Thus S and X1 are bivariate normal
with mean vector zero, variances ν and ν1, respectively, and covariance ν1. It is well
known that, when T and U are jointly normal random vectors with respective mean
vectors µT and µU , respective covariance matrices ΣTT and ΣUU , and cross-covariance
matrix ΣTU = ΣT

UT , the conditional distribution of U given T = t is normal with mean
vector µU + ΣUTΣ−1TT (t − µT ) and covariance matrix ΣUU.T := ΣUU − ΣUTΣ−1TTΣTU .
(In the bivariate case pertinent here, this fact is reviewed in the hint to Problem 13!)
In our case we therefore see that the conditional distribution of X1 given S = s is
normal with mean (ν1/ν)s and variance ν1 − (ν1/ν)ν1 = ν1ν2/ν. In particular,

E[X1|X1 +X2 = s] = ν1s/(ν1 + ν2).

Solution #2: Let S := X1 +X2 and ν := ν1 + ν2. By independence, the joint density
of X1 and X2 is the product of their marginal densities. By change of variables, the
joint density ϕX1,S of X1 and S is therefore given by

ϕX1,S(x, s) = ϕX1(x)ϕX2(s− x).

Further, the marginal distribution of S is normal with mean zero and variance ν, and
hence the conditional density φX1|S of X1 given S is given by

φX1|S(x|s) =
φX1,S(x, s)

ϕν(s)
=
ϕX1(x)ϕX2(s− x)

ϕν(s)

A small “complete-the-square” computation reveals that the conditional distribution
of X1 given S is normal with mean ν1s/ν and variance ν1ν2/ν. In particular,

E[X1|X1 +X2 = s] = ν1s/(ν1 + ν2).
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