
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Winter Session

Wednesday, January 21, 2015

Instructions: Read carefully!

1. This closed-book examination consists of 15 problems, each worth 5 points. The
passing grade has been set at 50 points, i.e., 2/3 of the total points. Partial credit
will be given as appropriate; each part of a problem will be given the same weight.
If you are unable to prove a result asserted in one part of a problem, you may still
use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been grouped by topic, but there are roughly equally many
mainly motivated by each of the three areas identified in the syllabus (linear algebra;
real analysis; probability). Nor have the problems been arranged systematically by
difficulty. If a problem directs you to use a particular method of analysis, you must
use it in order to receive substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. The examination will begin at 8:30 AM; lunch and refreshments will be provided.
The exam will end just before 5:00 PM. You may leave before then, but in that case
you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let I be the k × k identity matrix and J the k × k matrix of all ones with k ≥ 2.
Define a k× k real matrix C = (a− b)I + bJ for some real a and b. Show that C has
an inverse if and only if a ̸= b and a ̸= −(k − 1)b.

Solution: C will be invertible if and only if det(C) ̸= 0. We proceed to compute the
determinant of C:

C =



a b b · · · b b
b a b · · · b b
b b a · · · b b
...

...
...

. . .
...

...
b b b · · · a b
b b b · · · b a


.

By performing elementary row (and column) operations we will not change the value
of the determinant of C. Create a matrix C∗ from C by subtracting the second row
of C from the first row of C, then subtract the third row of C from the second row
of C; etc. The result is the matrix

C∗ =



a− b b− a 0 · · · 0 0
0 a− b b− a · · · 0 0
0 0 a− b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a− b b− a
b b b · · · b a


,

which has the same determinant as C. By adding the first column of C∗ to the second
column of C∗, then adding the second column of this matrix to the third column of
C∗, and so on, we arrive at the lower triangular matrix

C∗∗ =



a− b 0 0 · · · 0 0
0 a− b 0 · · · 0 0
0 0 a− b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a− b 0
b 2b 3b · · · (k − 1)b a+ (k − 1)b


whose determinant is (a + (k − 1)b)(a− b)k−1 which is non-zero exactly when a ̸= b
and a ̸= −(k − 1)b.
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2. (a) Prove the combinatorial identity(
m

k

)
=

(
m− 1

k − 1

)
+

(
m− 1

k

)
for m ≥ 1.

(b) Prove the identity (
n+ r

n

)
=

n∑
j=0

(
j + r − 1

j

)
for n ≥ 0 and r ≥ 1.

Solution:

(a) Here is a combinatorial proof. Given a set of m objects, mark one as “special”.
The left-hand side is the number of subsets of size k. The first term on the right
is the number of such subsets that include the special object, while the second
term on the right is the number of such subsets that exclude the special object.

(b) One way to prove the identity is by induction on n using the result of part (a).
For n = 0 the desired result

(
r
0

)
=

(
r−1
0

)
is clear, since it reduces to 1 = 1. Now

suppose that the desired identity holds for n− 1 ≥ 0. Then(
n+ r

n

)
=

(
n− 1 + r

n− 1

)
+

(
n+ r − 1

n

)
by part (a)

=
n−1∑
j=0

(
j + r − 1

j

)
+

(
n+ r − 1

n

)
by induction

=
n∑

j=0

(
j + r − 1

j

)
.

3. Let X be a real random variable that only takes positive values (i.e., X > 0 always).
Does the equation

logE[X] = E[logX] (∗)

hold always, sometimes, or never?

That is to say:

• If you answer always, then you must prove that (∗) holds for all positive random
variables X.
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• If you answer sometimes, then you must give an example where (∗) holds and
an example where (∗) fails.

• And if you answer never, then you must prove that (∗) fails for all positive
random variables X.

Solution: Equation (∗) holds sometimes.

Equation (∗) holds if X is a constant random variable, say, X = x (with probability
one). Then both sides of (∗) equal log x.
But if X = 1 with probability 1

2
and e with probability 1

2
, then

logE[X] = log

(
1 + e

2

)
≈ 0.62,

E[logX] =
1

2
· 0 + 1

2
· 1 = 0.5

and so (∗) fails.

4. Let f be a real-valued function defined on R. Prove that if f is continuous, then
f−1(S) is an open set for each open set S ⊂ R.

Solution: Let S ⊂ R be an open set. Let x ∈ f−1(S). Then f(x) ∈ S, and there
exists ϵ > 0 such that (f(x) − ϵ, f(x) + ϵ) ⊂ S. Since f is continuous, there exists
δ > 0 such that |x−y| < δ implies |f(x)−f(y)| < ϵ. Thus, for every y ∈ (x−δ, x+δ),
it follows that f(y) ∈ (f(x) − ϵ, f(x) + ϵ) ⊂ S. Therefore (x − δ, x + δ) ⊂ f−1(S),
implying that S is open.

5. Suppose X and Y are random variables with the property that P (|X − Y | < ε) = 1
for some ε > 0. Show that if X has finite expectation, then Y has finite expectation
and |E(X)− E(Y )| ≤ ε.

Solution: Since |X − Y | is a nonnegative random variable and P (|X − Y | ≥ ε) = 0
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it follows that

E(|X − Y |) =

∫ ∞

0

P (|X − Y | ≥ t) dt

=

∫ ε

0

P (|X − Y | ≥ t) dt

≤
∫ ε

0

1 dt = ε.

Further, |Y | = |X − Y − X| ≤ |X − Y | + |X| shows that Y has finite expectation.
Finally, |E(X)− E(Y )| = |E(X − Y )| ≤ E(|X − Y |) ≤ ε.

6. Let A be an n× n real matrix, show that if A2 = A then

rank(A) + rank(I − A) = n.

Solution: For any x ∈ Rn,
x = Ax+ (I − A)x.

Therefore we have Rn = range(A) + range(I − A) and

n = dim(range(A) + range(I − A)) ≤ rank(A) + rank(I − A).

On the other hand, it follows from A(I−A) = 0 that range(I−A) ⊂ null(A). Hence,

rank(A) + rank(I − A) ≤ rank(A) + dim(null(A)) = n.

Alternate solution: Because A2−A = 0, the eigenvalues of A are roots of λ2−λ = 0.
Therefore, both A and I − A have eigenvalues 1 or 0. We have

rank(A) = multiplicity of eigenvalue 1 of A

rank(I − A) = multiplicity of eigenvalue 1 of I − A.

Therefore, rank(A) + rank(I − A) = n.

5



7. Let f : Rk → Rk be such that there exists 0 < α < 1 with the property that

|f(x)− f(y)| ≤ α|x− y| for all x, y ∈ Rk.

Show that there exists a unique x∗ ∈ Rk such that f(x∗) = x∗.

Solution: Let x0 ∈ Rk be any point in Rk. We consider the sequence of points xn :=
fn(x0), n = 1, 2, . . ., where f 1(x0) = f(x0) and for n > 1, fn(x0) = f(fn−1(x0)). By
induction, it can be shown that |xn+1 − xn| ≤ αn|x1 − x0|. Thus for 1 ≤ m < n < ∞
we have

|xn − xm| ≤
n−1∑
k=m

|xk+1 − xk| ≤
n−1∑
k=m

αk|x1 − x0| ≤ |x1 − x0|
∞∑

k=m

αk =
αm

1− α
|x1 − x0|,

which doesn’t depend on n and vanishes in the limit as m → ∞. This shows that the
sequence (xn) is a Cauchy sequence. Since Rk is complete, every Cauchy sequence
converges, and therefore xn converges to some x∗ ∈ Rk. We show that f(x∗) = x∗.
Suppose to the contrary that f(x∗) = y∗ ̸= x∗. Let r = |x∗ − y∗| and choose N ∈ N
such that |xn−x∗| < r

2
for all n ≥ N . Then r

2
> α r

2
> α|xN−x∗| ≥ |f(xN)−f(x∗)| =

|xN+1 − y∗|. Also, |xN+1 − x∗| < r
2
. But then

r = |x∗ − y∗| ≤ |x∗ − xN+1|+ |xN+1 − y∗| < r

2
+

r

2
= r

which is a contradiction.

The uniqueness of x∗ follows from the following argument. Suppose there exists
y∗ ̸= x∗ such that f(y∗) = y∗. Then |f(x∗) − f(y∗)| ≤ α|x∗ − y∗| < |x∗ − y∗| =
|f(x∗)− f(y∗)|, which is a contradiction.

8. Prove that an n×n real matrix A, orthogonal (A⊤ = A−1) and unimodular (det(A) =
1) for n odd leaves invariant at least one vector x ∈ Rn with x ̸= 0.

Solution: Since A is unitary, all of its eigenvalues λ satisfy |λ| = 1. Since the
characteristic polynomial of A is of odd degree, it has at least one real root λ, thus
= 1 or −1, and an odd number of real eigenvalues. The corresponding eigenvectors x
can be chosen to be real. If one supposes that all of the real eigenvalues of A are −1,
then det(A) = −1 since the complex conjugate pairs contribute factors of |λ|2 = 1.
Thus, A has at least one eigenvalue +1 and the corresponding eigenvector satisfies
Ax = x.
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9. Evaluate:

lim
n→∞

[
1

log(1 + 1
n
)
− n

]
where log is the natural (base-e) logarithm.

Solution: Note that for x small

log(1 + x) = x− 1

2
x2 +O(x3).

We then calculate:

lim
n→∞

[
1

log(1 + 1
n
)
− n

]
= lim

n→∞

1− n log(1 + 1
n
)

log(1 + 1
n
)

= lim
n→∞

1− n
[
1
n
− 1

2n2 +O(n−3)
]

1
n
+O(n−2)

= lim
n→∞

1
2n

+O(n−2)
1
n
+O(n−2)

=
1

2
.

10. Let A be an n × n real symmetric matrix such that Ak = Ak+1 for some positive
integer k. Show that A2 = A.

Solution: Let P be an orthogonal matrix such that P TAP = D, where D is the
diagonal matrix of the eigenvalues of A. Raising both sides of the preceding equation
to the kth power gives (P TAP )k = (P TAP )(P TAP ) · · · (P TAP ) = P TAkP = Dk.
Similarly, P TAk+1P = Dk+1, and since Ak = Ak+1 we must have Dk = Dk+1. This
shows that each element of the diagonal of D is either 0 or 1. Thus, D2 = D, which
in turn implies A2 = A.

11. Compute the probability that a randomly chosen positive divisor of 1099 is an integer
multiple of 1088.

Solution: The prime factorization of 1099 is 299 · 599, so all divisors of 1099 have the
form 2a · 5b where a and b are integers with 0 ≤ a, b ≤ 99. Since there are 100 choices
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for each of a and b, 1099 has 1002 positive integer divisors. Of these, the multiples
of 1088 = 288 · 588 must satisfy the inequalities 88 ≤ a, b ≤ 99. Thus, there are 12
choices for each of a and b, so 122 of the 1002 divisors of 1099 are multiples of 1088.
Consequently, the desired probability is

122

1002
=

9

625
.

12. Let X and Y be independent standard Gaussian variables. Show that the probability
density function of Z = X/Y has the form

f(z) =
1

π(1 + z2)
, z ∈ R .

(This distribution is known as the standard Cauchy distribution.)

Solution: Let Z = X
Y
andW = X and consider the transformation (X, Y ) → (Z,W ),

i.e.,

Z(X,Y ) =
X

Y
, W (X, Y ) = X.

The inverse transformation is X = X(Z,W ) = W, Y = Y (Z,W ) = W
Z
, and its

Jacobian is w
z2
. Therefore, fZ,W (z, w) = fX,Y (w,

w
z
)| w

z2
| and

fZ(z) =

∫ ∞

0

fZ,W (w,
w

z
)
w

z2
dw +

∫ 0

−∞
fZ,W (w,

w

z
) · −w

z2
dw

=

∫ ∞

0

1

2π
e−

w2

2 e−
w2

2z2
w

z2
dw +

∫ 0

−∞

1

2π
e−

w2

2 e−
w2

2z2 · −w

z2
dw

= 2

∫ ∞

0

1

2π
e−

w2(1+ 1
z2

)

2
w

z2
dw

=
1

πz2

∫ ∞

0

we−
w2(1+ 1

z2
)

2 dw =
1

πz2
· 1

1 + 1
z2

=
1

π(z2 + 1)
.

13. Let A be an m×n real matrix and b ∈ Rm. Show that Ax = b has a solution x ∈ Rn

if and only if b is orthogonal to all y ∈ Rm such that ATy = 0.

Solution: We are asked to show that b is in the range of A if and only if b is in the
orthogonal complement of the null space of AT , i.e., that range(A) = null(AT )⊥, or,
equivalently, range(A)⊥ = null(AT ).
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First suppose y ∈ null(AT ) (i.e., ATy = 0) and b ∈ range(A) (i.e., Ax = b for some
x ∈ Rn). Then yT b = yTAx = (ATy)Tx = 0Tx = 0, and so y ∈ range(A)⊥. This
shows null(AT ) ⊆ range(A)⊥.

On the other hand, for any y ∈ range(A)⊥ and x ∈ Rn we have Ax ∈ range(A) and
so 0 = (Ax)Ty = xTATy. Since this is true for any x ∈ Rn, we must have ATy = 0,
i.e., y ∈ null(AT ). This shows range(A)⊥ ⊆ null(AT ).

14. Let (an) be a real sequence such that
∑∞

n=1 an = c ∈ R. Use Cesàro’s theorem to
prove that

lim
N→∞

1

N

N∑
k=1

(N + 1− k)ak = c.

Solution: Define the partial sums sn :=
∑n

k=1 ak. Observe first that summation by
parts gives

N∑
k=1

(N + 1− k)ak =
N∑
k=1

ak

N∑
n=k

1 =
N∑

n=1

n∑
k=1

ak =
N∑

n=1

sn.

Since by assumption sn → c as n → ∞, it follows from Cesàro’s theorem that

1

N

N∑
k=1

(N + 1− k)ak =
1

N

N∑
n=1

sn → c

as N → ∞.

15. Show that for any three real numbers a, b, and c, the following inequality holds:

(1
2
a+ 1

3
b+ 1

6
c)2 ≤ 1

2
a2 + 1

3
b2 + 1

6
c2.

Solution: We apply the Cauchy–Schwarz inequality to get

(1
2
a+ 1

3
b+ 1

6
c)2

= ( 1√
2
( 1√

2
a) + 1√

3
( 1√

3
b) + 1√

6
( 1√

6
c))2

≤ (( 1√
2
)2 + ( 1√

3
)2 + ( 1√

6
)2)(( 1√

2
a)2 + ( 1√

3
b)2 + ( 1√

6
c)2)

= 1
2
a2 + 1

3
b2 + 1

6
c2.
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