
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Real Analysis

Tuesday, August 24, 2021

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Compute the following derivative and simplify as much as possible (restrict your
attention to x > 0):

d

dx

∫ x

−x

1− e−xy

y
dy.

Solution: The singularity at y = 0 is removable. Apply the Liebniz rule:

d

dx

∫ x

−x

1− e−xy

y
dy =

1− e−x2

x
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2
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∫ x

−x

∂

∂x
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y
dy

=
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x
+

∫ x

−x

e−xy dy

=
ex

2 − e−x2

x
+

e−xy

−x

∣∣∣∣y=x

y=−x

= 2
(ex2 − e−x2

x

)
or

4 sinh(x2)

x
.

2. Consider the sequence (xn) defined by xn+1 =
√
4xn − 3, for n ≥ 1 and x1 = 7.

Show that xn is monotone and find its limit.

Solution: From the definition, x1 = 7 ≥ 3. Moreover, if, for some k ≥ 1, xk ≥ 3,
it follows that xk+1 =

√
4xk − 3 ≥

√
4(3)− 3 = 3. Therefore, inductively, we see

xn ≥ 3 for all n ≥ 1. Now, x2
n+1 − x2

n = 4xn − 3− x2
n = −(xn − 1)(xn − 3) ≤ 0 since

xn ≥ 3 for all n. Consequently, x2
n+1 ≤ x2

n for all n which in turn implies xn+1 ≤ xn,
i.e., (xn) is monotone decreasing. Since the sequence is also bounded below (indeed,
by 3) the sequence converges. Let x = limn→∞ xn. We know x ≥ 3 already. After
taking limits in the recursive expression, we find x2 − 4x+3 = 0 and x = 1 or x = 3.
The limit is, therefore, 3.

3. A subset S of R is said to be disconnected if there exist disjoint open sets U and V
in R such that S ⊆ U ∪ V , S ∩ U ̸= ∅, and S ∩ V ̸= ∅. If S is not disconnected,
then it is said to be connected. Suppose S is connected and f : R → R is continuous.
Prove: f(S) is connected.
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Solution: Suppose S is connected and f : R → R is continuous, and, for the sake
of contradiction, f(S) is disconnected. Then there are disjoint open sets U and V
of R such that f(S) ⊆ U ∪ V , f(S) ∩ U ̸= ∅, and f(S) ∩ V ̸= ∅. Therefore,
S ⊆ f−1(f(S)) ⊆ f−1(U ∪ V ) = f−1(U)∪ f−1(V ). Since f is continuous, the disjoint
sets f−1(U) and f−1(V ) are open; further, S ∩ f−1(U) ̸= ∅ and S ∩ f−1(V ) ̸= ∅.
Thus S is disconnected, which is a contradiction.

4. Show that the sequence fn(x) =
x

1+nx2 , n = 1, 2, 3, . . . converges uniformly to some
function f(x) on R.

Solution: For each fixed x ∈ R it is clear the sequence (fn(x)) converges to zero. Let
ε > 0 be given.

For each n note that fn(x) is continuously differentiable and lim|x|→∞ |fn(x)| =

lim|x|→∞
|x|

1+nx2 = 0. Moreover, f ′
n(x) =

1−nx2

(1+nx2)2
= 0 exactly when x = ± 1√

n
. There-

fore, maxx∈R |fn(x)| = |fn( 1√
n
)| = 1

2
√
n
. Now, for any x ∈ R, |fn(x)| ≤ maxy |fn(y)| =

1
2
√
n
< ε when n > 1

4ε2
. Since this choice of n does not depend on x the convergence

to 0 is uniform.

5. Prove or disprove: For all x, y ≤ 0 we have |ex − ey| ≤ |x− y|.

Solution: The claim is true. Fix y ≤ 0 and consider the function g(x) = ex for x ≤ 0.
Apply the mean value theorem to the function g:

ex − ey = eξ(x− y),

where ξ is between x and y. Now, since x ≤ 0 and y ≤ 0, we have eξ ≤ 1; consequently,

|ex − ey| = |eξ(x− y)| ≤ |x− y|

and the result follows.

Alternate solution: |ey − ex| =
∣∣∫ y

x
eu du

∣∣ ≤ ∣∣∫ y

x
e0 du

∣∣ = |x− y| when x, y ≤ 0.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Afternoon Exam–Probability

Tuesday, August 24, 2021

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 1:30 PM and end at 4:30 PM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. A spinner has 4 equally likely regions, and a person spins this spinner repeatedly. Let
N be the number of spins required for every region to be seen at least once. Compute
E(N).

Solution: For i = 1, 2, 3, 4, let Xi be the number of additional spins necessary to land
in a region other than the previous i − 1 distinct regions. Clearly, X1 ≡ 1 since the
very first spin will land in one of the four regions. Since trials are independent, the
number X2 of additional spins necessary to land in a region different from this first
region is a geometric rv with success probability 3/4. Likewise, the number X3 of
additional spins necessary to land in a region different from the first two is geometric
with parameter 2/4, and the number X4 of additional spins necessary to land in the
last possible region is geometric with parameter 1/4. Now, N = X1 +X2 +X3 +X4,
from which we have E(N) = E(X1)+E(X2)+E(X3)+E(X4) = 1+ 4

3
+ 4

2
+ 4

1
= 25

3
.

2. 106 students in a probability class were assigned to each toss a fair coin 100 times.
Compute the probability that no student tosses exactly 50 heads. Do not simplify.

Solution: The probability a student does not toss exactly 50 heads is 1−
(
100
50

)
(1
2
)100.

Therefore, the probability that all students do not toss exactly 50 heads is[
1−

(
100

50

)(1
2

)100]106
.

3. Consider two sequences of random variables X1, X2, X3, . . . and Y1, Y2, Y3, . . . . Sup-
pose Xn converges to a with probability 1 and Yn converges to b with probability 1.
Prove Xn + Yn converges to a+ b with probability 1.

Solution: Let A = {ω ∈ Ω : Xn(ω) does not converge to a} and similarly B =
{ω ∈ Ω : Yn(ω) does not converge to b}. By supposition, P (A) = P (B) = 0. Define
C = {ω ∈ Ω : Xn(ω)+Yn(ω) does not converge to a+b}. Note C ⊆ A∪B. Therefore,
P (C) ≤ P (A ∪ B) ≤ P (A) + P (B) = 0 implies P (C) = 0. Consequently, Xn + Yn

converges to a+ b with probability 1.
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4. Suppose X1, X2, X3, . . . is an i.i.d. sequence such that X1 has the moment generating
function M(θ) = 1

1−θ2
for |θ| < 1. For each integer n ≥ 1, let

Sn =
n∑

i=1

X2
i .

If it is possible, find, with justification, sequences (an) and (bn) such that Sn−an
bn

converges in distribution to a standard normal. If it is not possible, explain why
not.

Solution: If we set Yi = X2
i then the sequence (Yi) is i.i.d. and E(Yi) = M ′′(0) and

E(Y 2
i ) = M (4)(0). By writing M(θ) = 1

2
(1− θ)−1 + 1

2
(1 + θ)−1 we can easily find the

moments: M ′′(0) = 2 and M (4)(0) = 24. Therefore, E(Yi) = 2 and Var(Yi) = 20.
It follows immediately from the Central Limit Theorem that by taking an = 2n and
bn =

√
20n we have the stated convergence.

5. If X and Y are independent unit exponential random variables, i.e., each possess the
pdf f(x) = e−x for x > 0, find the joint density of their polar coordinates (R,Θ) of
the point (X, Y ). Are R and Θ independent?

Solution: Since x = r cos(θ) and y = r sin(θ) it follows that the Jacobian of the
transformation taking (r, θ) to (x, y) is r and the joint pdf is

fR,Θ(r, θ) = e−r cos(θ)e−r sin(θ)r = re−r(cos(θ)+sin(θ)) for 0 < r < ∞, 0 < θ <
π

2
.

The random variables R and Θ are not independent as the joint pdf doesn’t factor
as a product of pdfs involving r and θ separately.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Linear Algebra

Wednesday, August 25, 2021

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 PM and end at 11:30 PM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let x and y be two vectors in Rn. Find a value of α ∈ R such that ∥x − αy∥2 is a
minimum and show that ∥x− αy∥2 + ∥αy∥2 = ∥x∥2.

Solution: We assume y ̸= 0; otherwise, there is nothing to show.

Let g(u) := ∥x− uy∥2 = ⟨x− uy, x− uy⟩ = ∥x∥2 − 2u⟨x, y⟩+ u2∥y∥2. Differentiating
we have g′(u) = −2⟨x, y⟩ + 2u∥y∥2 = 0 implies α = ⟨x, y⟩/∥y∥2 is the critical value,
in fact, the minimizer. Moreover,

∥x− αy∥2 + ∥αy∥2 = ∥x∥2 − 2α⟨x, y⟩+ 2α2∥y∥2

= ∥x∥2 − 2
⟨x, y⟩
∥y∥2

⟨x, y⟩+ 2
⟨x, y⟩2

∥y∥4
∥y∥2

= ∥x∥2,

which was to be shown.

2. Let A = [aij(t)] be a 2× 2 matrix of real-valued differentiable functions. Show that

d

dt
detA = detD1 + detD2

whereDi is the matrix A with its ith column replaced by the column of the derivatives
of the entries in the ith column of A.

Solution: By a direct calculation

d

dt
detA =

d

dt

∑
σ

sgn(σ)a1σ1(t)a2σ2(t)

=
d

dt

(
a11(t)a22(t)− a12(t)a21(t)

)
= a′11(t)a22(t) + a11(t)a

′
22(t)−

(
a′12(t)a21(t) + a12(t)a

′
21(t)

)
=

(
a′11(t)a22(t)− a′12(t)a21(t)

)
+
(
a11(t)a

′
22(t)− a12(t)a

′
21(t)

)
= detD1 + detD2.
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3. For any x ∈ Rn, show that the Householder matrixMx = I− 2
∥x∥2xx

T is an orthogonal

matrix and find its eigenvalues. Here, I is the n × n identity matrix, ∥x∥ is the
Euclidean (usual) norm, and T is transpose.

Solution: Clearly, MT
x = Mx. Furthermore,

MxM
T
x =

(
I − 2

∥x∥2
xxT

)(
I − 2

∥x∥2
xxT

)T

=

(
I − 2

∥x∥2
xxT

)(
I − 2

∥x∥2
xxT

)
= I − 2

∥x∥2
xxT − 2

∥x∥2
xxT +

4

∥x∥4
x
(
xTx

)
xT

= I − 4

∥x∥2
xxT +

4

∥x∥2
xxT = I.

Therefore, MxM
T
x = MT

x Mx = M2
x = I and Mx is an orthogonal matrix.

Moreover, since Mx is orthogonal, Mxv = λv implies M2
xv = λMxv = λ2v = v.

Therefore, the eigenvalues are all ±1.

4. Let A and B be n× n matrices such that AB = BA. Prove: if all the eigenvalues of
A are distinct, then each eigenvector of A is an eigenvector of B.

Solution: Since A has n distinct eigenvalues, the dimension of each eigenspace is 1.

Let λ be an eigenvalue of the matrix A and let x be the eigenvector corresponding to
λ. Since the eigenspace Eλ for λ is one dimensional and x ∈ Eλ is a nonzero vector
in it, {x} is a basis for Eλ. That is, we have Eλ = {cx|c ∈ C}.
Now, Ax = λx implies B(Ax) = λ(Bx). Since AB = BA it follows that A(Bx) =
λ(Bx) and Bx ∈ Eλ. This implies Bx = cx for some c ∈ C. Therefore, the vector x
is also an eigenvector corresponding to the eigenvalue c of the matrix B.

5. Let A be a real n× n matrix and let ρ(A) be its spectral radius.

Prove or disprove: ρ(A+B) ≤ ρ(A) + ρ(B).
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Solution: We disprove: Take A =

[
0 1
0 0

]
and B =

[
0 0
1 0

]
. Then ρ(A + B) = 1

whereas ρ(A) = ρ(B) = 0.
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