
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Real Analysis

Tuesday, August 25, 2020

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Evaluate the following limit (if it exists):

lim
x→0+

(
1

x
− 1

sin(x)

)
.

Here x is tending to 0 through values in the interval 0 < x < π
2
.

Solution: Since we have an indeterminant form, applications of L’Hôpital’s rule gives

lim
x→0+

(
1

x
− 1

sin(x)

)
= lim

x→0+

sin(x)− x

x sin(x)
= lim

x→0+

cos(x)− 1

x cos(x) + sin(x)

= lim
x→0+

− sin(x)

2 cos(x)− x sin(x)
=

0

2
= 0.

Alternative solution. Since x− x3

3
< sin(x) < x for 0 < x < π

2
, it follows that

0 <
1

x
− 1

sin(x)
<

1

x
− 1

x− x3

3

=
−x

3(1− x2

3
)
.

Consequently, 1
x
− 1

sin(x)
tends to 0 as x tends to 0.

2. Let A ⊆ R2 be open. Prove: for each x ∈ R, the set Ax = {y : (x, y) ∈ A} is an open
subset of R.

Solution: Let A be an open subset of R2. Fix an x ∈ R for which Ax is nonempty
(otherwise there is nothing to show); and let y ∈ Ax be arbitrarily chosen. Since
(x, y) belongs to A, there exists an open rectangle (a1, a2)× (b1, b2) entirely contained
in A centered at (x, y). In particular, we found an open interval (b1, b2) containing y,
and Ax is an open subset of R.

3. For each integer n ≥ 1 define fn : [0, 2] → R by fn(x) =
xn

1+xn . Prove or disprove that
these functions converge uniformly on [0, 2].

Solution: These functions do not converge uniformly on [0, 2], because, if they did
converge uniformly on the compact interval [0, 2] the limit function would necessarily
be continuous. However, for 0 ≤ x < 1, limn→∞ fn(x) = 0, whereas fn(1) =

1
2
for all

n. This shows our limit function is discontinuous (at x = 1).
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4. Give an example of a uniformly continuous function on [0, 1] that is differentiable on
(0, 1) but whose derivative is not bounded on (0, 1). Be sure to justify your claim.

Solution: Consider the function f(x) = x sin( 1
x
) for 0 < x ≤ 1, and f(0) = 0. On

the open interval (0, 1), both sin( 1
x
) and x are continuously differentiable functions,

and, therefore, their product is differentiable. Moreover, since | sin( 1
x
)| ≤ 1 for all

0 < x ≤ 1, we have limx→0+ x sin( 1
x
) = 0 = f(0) and our f(x) is continuous on [0, 1]

and consequently uniformly continuous. However, for x > 0, f ′(x) = sin( 1
x
)− 1

x
cos( 1

x
)

is unbounded as x approaches 0.

5. Let F (x) = (f(x) − f(a))(g(b) − g(x)), where f and g are continuous on [a, b] and
differentiable on (a, b). Suppose further that g′(x) is never zero. Show that there
must exist ξ between a and b such that

f ′(ξ)

g′(ξ)
=

f(ξ)− f(a)

g(b)− g(ξ)
.

Solution: F (x) is also differentiable when a < x < b and

F ′(x) = f ′(x)(g(b)− g(x))− g′(x)(f(x)− f(a)).

Now, F (a) = F (b) = 0 and it follows by the Mean–Value Theorem that there exists
a ξ between a and b such that F ′(ξ)(b − a) = F (b) − F (a) = 0 implying F ′(ξ) = 0.
That is,

f ′(ξ)(g(b)− g(ξ))− g′(ξ)(f(ξ)− f(a)) = 0

or, after rearranging terms,

f ′(ξ)

g′(ξ)
=

f(ξ)− f(a)

g(b)− g(ξ)
.

The division by g′(ξ) is justified since it is never zero; moreover, g(b) − g(ξ) ̸= 0
because, if it did, the Mean–Value Theorem would imply g′(c) = 0 for some c ∈ (ξ, b).
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Afternoon Exam–Probability

Tuesday, August 25, 2020

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 1:30 PM and end at 4:30 PM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let Z be a standard normal random variable. Find the pdf of Y = |Z| and the mean
and variance of Y .

Solution: If y < 0, the cdf of Y is FY (y) = 0. If y ≥ 0, then

FY (y) = P (Y ≤ y) = P (−y ≤ Z ≤ y) = Φ(y)− Φ(−y) = 2Φ(y)− 1,

where Φ is the cdf of Z. Therefore, the pdf of Y is fY (y) =

{ √
2
π
e−y2/2 y ≥ 0

0 y < 0
.

E(Y ) =
∫∞
0

y ·
√

2
π
e−y2/2 dy =

√
2
π

∫∞
0

ye−y2/2 dy =
√

2
π

E(Y 2) = E(Z2) = Var(Z) + {E(Z)}2 = 1.

Var(Y ) = 1− 2
π
= π−2

π
.

2. A fair coin is tossed repeatedly. Let X represent the trial on which the first head
occurs. Compute the probability X is divisible by 2 or 3.

Solution:

P (X is divisible by 2) =
∑∞

j=1 P (X = 2j) =
∑∞

j=1(
1
2
)2j =

1
4

1− 1
4

= 1
3
.

P (X is divisible by 3) =
∑∞

j=1 P (X = 3j) =
∑∞

j=1(
1
2
)3j =

1
8

1− 1
8

= 1
7
.

P (X is divisible by 6) =
∑∞

j=1 P (X = 6j) =
∑∞

j=1(
1
2
)6j =

1
64

1− 1
64

= 1
63
.

P (X is divisible by 2 or 3) = 1
3
+ 1

7
− 1

63
= 29

63
.

3. For a positive integer n ≥ 1 let Nn = {1, 2, . . . , n} and consider the power set 2Nn of
Nn, i.e., the set of all subsets ofNn. An experiment has us select A,B ∈ 2Nn uniformly
at random with replacement (so A = B is possible). Compute the probability that
one is a subset of the other.

Solution: First, we compute the probability A is a subset of B. All ordered pairs
(A,B) have probability 1/22n. Moreover, for each integer j = 0, 1, . . . , n, if |A| = j,
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then there are 2n−j subsets B of 2Nn that contain A. Moreover, there are
(
n
j

)
such

subsets A having cardinality j. Therefore, the probability A is a subset of B is∑n
j=0 (

n
j)2n−j

22n
= 3n

22n
.

By a symmetric argument, the probability B is a subset of A also equals 3n

22n
.

The probability A = B is 2n

22n
.

Finally, the probability one is a subset of the other is 2 · 3n

22n
− 2n

22n
= 3n−2n−1

22n−1 .

4. Suppose X1, X2, X3, . . . is a sequence of pairwise uncorrelated random variables hav-
ing finite mean µ and finite variance σ2. For each integer n ≥ 1, let Sn =

∑n
j=1Xj.

Prove that Sn

n
converges to µ in probability.

Solution: Since E(Sn

n
) = µ we have (using bilinearity of covariance)

Var(
Sn

n
) =

1

n2

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

=
1

n2

n∑
i=1

n∑
j=1

i = j

Cov(Xi, Xj) +
1

n2

n∑
i=1

n∑
j=1

i ̸= j

Cov(Xi, Xj)

=
1

n2

n∑
i=1

n∑
j=1

i = j

σ2 +
1

n2

n∑
i=1

n∑
j=1

i ̸= j

0

=
σ2

n
.

The Chebyshev inequality now implies that, for any ε > 0,

P (

∣∣∣∣Sn

n
− µ

∣∣∣∣ > ε) ≤
Var(Sn

n
)

ε2
=

σ2

nε2
→ 0

as n → ∞.

5. There are ten (10) boys standing in a circle which includes Fred. Suppose six (6) girls
enter the circle to form a larger circle with each girl between two boys. If all such
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ways of forming a larger circle are equally likely, what’s the probability that Fred
remains between two boys?

Solution: The ten boys make ten adjacencies for the girls. There are
(
10
6

)
equally

likely ways the girls can create a larger circle with each girl between two boys. If
Fred is to remain between two boys we lose two adjacencies for the girls to enter,
and, therefore, there are

(
8
6

)
ways the girls can create a larger circle and keep Fred

between two boys. The desired probability is(
8
6

)(
10
6

) =
2

15
.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Evening Exam–Linear Algebra

Wednesday, August 26, 2020

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 PM and end at 11:30 PM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Find the value(s) of λ for which the nonhomogeneous linear system

5x1 + 2x2 − λx1 = 4

2x1 + 2x2 − λx2 = 7

has a solution and write this solution as a function of λ.

Solution: By setting A =

[
5 2
2 2

]
and c =

[
4
7

]
we can write the system as Ax−

λx = c. The matrix A has eigenvalues λ1 = 6 and λ2 = 1 with respective eigenvectors

v1 =

[
2
1

]
and v2 =

[
1
−2

]
. There is no solution to the nonhomogeneous equation

if λ = 6 or 1. When λ ̸= 6, 1, the solution can be written as a linear combination of
the eigenvectors: x = α1v1 + α2v2.

Substituting this into our equation gives A(α1v1 + α2v2) − λ(α1v1 + α2v2) = c, or,
equivalently,

α1(6− λ)v1 + α2(1− λ)v2 = c.

Dotting both sides separately by v1 and then by v2 gives the equations:

α1(6− λ)5 = 15 and α2(1− λ)5 = −10,

which gives α1 =
3

6−λ
and α2 = − 2

1−λ
and

x =
3

6− λ

[
2
1

]
− 2

1− λ

[
1
−2

]
=

1

(6− λ)(1− λ)

[
6− 4λ
27− 7λ

]
.

2. Let A and B be complex n × n Hermitian matrices. Prove that AB is Hermitian if
and only if A and B commute.

Solution: If AB = BA, then, since A and B are Hermitian, (AB)∗ = (BA)∗ =
A∗B∗ = AB shows AB is also Hermitian.

Conversely, if AB = (AB)∗, then, since A and B are Hermitian, AB = B∗A∗ = BA
shows A and B commute.
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3. Let V be a finite-dimensional vector space, and let T : V → V be a linear transfor-
mation. Suppose that there is a vector v ∈ V such that the list

{v, Tv, T 2v, . . . }

spans V . Show that if S : V → V is a linear transformation that commutes with T ,
then there is a polynomial f such that S = f(T ).

Solution: We first show that if n = dim(V ), then {v, Tv, T 2v, . . . , T n−1v} is a basis
for V . To this end it suffices to show {v, Tv, T 2v, . . . , T n−1v} is linearly independent.
For each k ≤ n−1, we show that T kv is not in the span of {v, Tv, . . . , T k−1v}. To see
why, note that if for some k, T kv was in the span of {v, Tv, . . . , T k−1v}, then T kv =∑k−1

j=1 cjT
jv =

∑k−2
j=1 cjT

jv + ckT
k−1v and this would imply that T k+1v = T (T k)v =∑k−2

j=1 cjT
j+1v + ckT

kv would belong to the span of {v, Tv, . . . , T k−1v}. Inductively,

it would then follow that all T k+iv belongs to the span of {v, Tv, . . . , T k−1v} for all
i ≥ 0, which is a contradiction because then {v, Tv, . . . , T k−1v} spans V and the
dimension of V is strictly less than n.

Now, since {v, Tv, . . . , T n−1v} forms a basis for V , there exist coefficients ci such that
S(v) =

∑n−1
i=0 ciT

i(v). Let f(x) =
∑n−1

i=0 cix
i. Then for each j, we have

f(T )(T j(v)) =
( n−1∑

i=0

ciT
i
)
(T j(v)) =

n−1∑
i=0

ciT
i ◦ T j(v)

=
n−1∑
i=0

T j(ciT
i(v)) = T j

( n−1∑
i=0

ciT
i(v)

)
= T j(S(v))

= S(T j(v)).

This shows that f(T ) and S agree on the basis {v, Tv, . . . , T n−1v} of V , so S = f(T ).

4. Consider the n × n matrix An = [aij], where aii = 1 and, for all i ̸= j and some
−1 < ρ < 1, aij = ρ. For example,

A2 =

[
1 ρ
ρ 1

]
, and A3 =

 1 ρ ρ
ρ 1 ρ
ρ ρ 1

 .

Compute det(An) as a function of n.
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Solution: Consider An. Adding the last n− 1 rows of An to the first row of An gives
the matrix:

Ãn =


1 + (n− 1)ρ 1 + (n− 1)ρ · · · 1 + (n− 1)ρ

ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

 .

Now, taking the first column of Ãn and subtracting from each successive column gives
the matrix

C =


1 + (n− 1)ρ 0 · · · 0

ρ 1− ρ · · · 0
...

...
. . .

...
ρ 0 · · · 1− ρ

 .

Moreover, det(An) = det(C) = (1 + (n− 1)ρ)(1− ρ)n−1.

5. Find a real matrix A such that eA =

[
−2 0
0 −2

]
or prove no such matrix can exist.

Solution: It can be shown that etJ =

[
cos(t) sin(t)
− sin(t) cos(t)

]
, where J =

[
0 1
−1 0

]
.

Consequently, eπJ =

[
−1 0
0 −1

]
. Also, it can be shown that eln(2)I =

[
2 0
0 2

]
.

Now, since πJ and ln(2)I commute, it follows that

eπJ+ln(2)I = eπJeln(2)I =

[
−1 0
0 −1

] [
2 0
0 2

]
=

[
−2 0
0 −2

]
.

Thus, the matrix

A = πJ + ln(2)I =

[
ln(2) π
−π ln(2)

]
is one such matrix with the desired property.

Note: If S is a 2×2 invertible matrix, then SAS−1 is another matrix with the desired
property.
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