
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Real Analysis

Monday, August 19, 2019

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let u, v ∈ Rn be arbitrary points in n-dimensional Euclidean space. Prove:∣∣∣|u| − |v|
∣∣∣ ≤ |u− v|.

Solution: By the triangle inequality, |u| = |v + (u − v)| ≤ |v| + |u − v|, which gives
|u−v| ≥ |u|−|v|. Similarly, |v| = |u+(v−u)| ≤ |u|+|u−v| gives |u−v| ≥ −(|u|−|v|).
Together, we have |u− v| ≥

∣∣∣|u| − |v|
∣∣∣.

2. Compute the limit (with justification):

lim
x→+∞

(√
(x+ 5)(x+ 7)− x

)
.

Solution: First√
(x+ 5)(x+ 7)− x =

(x+ 5)(x+ 7)− x2√
(x+ 5)(x+ 7) + x

=
12x+ 35√

x2 + 12x+ 35 + x
,

from which the following bounds are immediate:

12x+ 35

2x+ 6
≤ 12x+ 35√

(x+ 6)2 + x
≤
√

(x+ 5)(x+ 7)− x ≤ 12x+ 35

2x
.

By the squeeze theorem, the limit is 6.

Alternative solution: When 0 < (12/x) + (35/x2) < 1, the binomial series yields:

√
(x+ 5)(x+ 7)− x = x

[(
1 +

12

x
+

35

x2

)1/2

− 1

]

= x

[
1

2

(
12

x
+

35

x2

)
+O

((
12

x
+

35

x2

)2
)]

= x

[
6

x
+O

(
1

x2

)]
= 6 +O

(
1

x

)
.

Thus, the limit is 6.
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3. Does the improper Riemann integral
∫∞
0

cos(x2) dx converge or diverge? Justify your

assertion. If needed, you may use (without proof) the fact that | sin(u)
u

| ≤ 1 for u ̸= 0.

Solution: It converges. Here’s why. An integration by parts gives∫ b

a

cos(x2) dx =

∫ b

a

1

2x
· 2x cos(x2) dx =

sin(x2)

2x

∣∣∣∣x=b

x=a

+
1

2

∫ b

a

sin(x2)

x2
dx.

Since 0 ≤ | sin(x2)| ≤ 1, sin(b2)
2b

will tend to 0 as b tends to +∞; also, sin(a2)
2a

=
a
2
sin(a2)

a2
will tend to 0 as a tends to 0 since sin(a2)

a2
remains bounded. Together these

show the boundary term in the display above vanishes in the limit as b → +∞ and

a → 0. Lastly,
∫∞
0

sin(x2)
x2 dx =

∫ 1

0
sin(x2)

x2 dx +
∫∞
1

sin(x2)
x2 dx. The first integral here is

bounded in absolute value by 1. The second integral is bounded in absolute value by∫∞
1

1
x2 dx = 1.

Remark about above solution: One could have noticed that the integral in the problem
statement is only improper at the upper limit +∞. Consequently, convergence of the
integral would follow from convergence of the integral

∫∞
1

cos(x2) dx circumventing
the need of using | sin(x)/x| remaining bounded near the origin.

Alternative solution: we can make a change of variable to give∫ ∞

x=0

cos(x2) dx =
1

2

∫ ∞

u=0

cos(u)√
u

du =
1

2

∫ π/2

u=0

cos(u)√
u

du+
1

2

∫ ∞

u=π/2

cos(u)√
u

du.

The first integral is finite since the integrand is nonnegative in (0, π/2] and bounded
by 1/

√
u, which is integrable over the interval. The second integral can be rewritten

as
∞∑
k=0

{Ak +Bk} , (1)

where

Ak =

∫ 2πk+(3π/2)

u=2πk+(π/2)

cos(u)√
u

du,

and

Bk =

∫ 2πk+(5π/2)

u=2πk+(3π/2)

cos(u)√
u

du.
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Observe that the integral Ak is negative and the integral Bk is positive, so that the
series A0 +B0 + A1 +B1 + · · · is alternating. Since | cosu| ≤ 1, we have

|Ak| ≤
∫ 2πk+(3π/2)

u=2πk+(π/2)

1√
u
du = 2

(√
2πk + (3π/2)−

√
2πk + (π/2)

)
≤ C√

k + (1/4)
, k ≥ 0

for a constant C. Also, since cos(u+ π) = − cos(u) we have

Bk =

∫ 2πk+(5π/2)

u=2πk+(3π/2)

cos(u)√
u

du =

∫ 2πk+(3π/2)

u=2πk+(π/2)

cos(u+ π)√
u+ π

du

=

∣∣∣∣∣
∫ 2πk+(3π/2)

u=2πk+(π/2)

cos(u)√
u+ π

du

∣∣∣∣∣ ≤ |Ak|.

and by an identical argument |Ak+1| ≤ Bk. Thus, the absolute value of the terms of
the series A0 +B0 + A1 +B1 + · · · tend to zero monotonically and (1) converges by
Leibniz’s alternating series test.

4. If (an) (n ≥ 1) is a Cauchy sequence of real numbers, is it true that (an) is bounded?
Prove this or give a counterexample.

Solution: The sequence must be bounded. Since (an) is Cauchy, for any ε > 0, there
exists an integer N such that |an − am| ≤ ε for all n,m ≥ N . Since |an| − |am| ≤
|an − am|, we have (by taking m = N) that |an| ≤ |aN |+ ε for all n ≥ N . Thus, for
all n ≥ 1 we have |an| ≤ max{|a1|, |a2|, . . . , |aN−1|, |aN |+ ε}.

Alternative solution: Since the real line is complete, the Cauchy sequence is conver-
gent and, therefore, bounded.

5. Assume that f is twice differentiable on the finite open interval (a, b), and there is
M ≥ 0 such that |f ′′

(x)| ≤ M for all x ∈ (a, b). Prove that f is uniformly continuous
on (a, b).

Solution: We first show that f
′
is bounded. Let z be fixed in (a, b). Let x be any

point in (a, b); by the mean-value theorem, there exists some point y ∈ (a, b) such
that

f
′
(x) = f

′
(z) + f

′′
(y)(x− z).
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Hence, we have
|f ′

(x)| ≤ |f ′
(z)|+M(b− a) := c.

By the mean-value theorem again, for any two points x and y in (a, b), we have
|f(x)−f(y)| ≤ c|x−y|. Then uniform continuity follows from this Lipschitz continuity.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Afternoon Exam–Probability

Monday, August 19, 2019

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 1:30 PM and end at 4:30 PM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. A standard six-sided die is rolled twelve times. Compute the probability that one
number occurs six times and two other numbers occur three times each.

Solution: The number of outcomes is 612. To count the number of good outcomes:

1. Pick the number that occurs 6 times:
(
6
1

)
= 6 choices.

2. Pick the two numbers that occur 3 times each:
(
5
2

)
choices.

3. Pick slots (rolls) for the number that occurs 6 times:
(
12
6

)
choices.

4. Pick slots for the smaller of the numbers that occur 3 times each:
(
6
3

)
choices.

Therefore, our probability is
(
6
1

)(
5
2

)(
12
6

)(
6
3

)
/612 = 1925

3779136

.
= 0.0051.

2. Seven girls and three boys are to be seated in a row of ten chairs randomly. If we
think of the ten chairs as nine adjacent pairs of chairs, what is the expected number
of adjacent pairs of chairs occupied by two girls?

Solution: For i = 1, 2, . . . , 9 let Xi = 1 if the ith adjacent pair of chairs is occupied
by two girls, otherwise Xi = 0. Then

∑9
i=1Xi is the total number of adjacent pairs

of chairs occupied by two girls. It follows that E(
∑9

i=1Xi) =
∑9

i=1 P (Xi = 1) =

9 · (72)
(102 )

= 21
5
= 4.2.

3. Let α > 0 and β > 0 be arbitrary. Suppose X and Y have the joint pdf

f(x, y) =
1

Γ(α)Γ(β)
xα−1(y − x)β−1e−y for 0 < x < y < ∞,

and f(x, y) = 0 otherwise. Find the pdf of U = Y −X. Is U independent of X?

Solution: Consider the transformation u = y − x and v = x with inverse transfor-

mation x = v and y = u + v having Jacobian determinant J = det

(
0 1
1 1

)
= −1.
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It follows that for 0 < x < y < ∞ we have 0 < v < u+ v < ∞ and consequently, for
u > 0 and v > 0, we have

fU,V (u, v) = f(v, u+ v)|J | = vα−1uβ−1e−(u+v)

Γ(α)Γ(β)
=

vα−1e−v

Γ(α)
· u

β−1e−u

Γ(β)
.

This shows that U and V = X are independent, as well as that U ∼ Gamma(β, 1).

4. You toss a balanced coin until you see a head for the first time, say on trial N . Then
you toss the same coin N times. Compute the probability you only toss that one
head. (Here N is random.)

Solution: We are told P (N = n) = (1
2
)n for n = 1, 2, 3, . . . , and let X1, X2, X3, be an

iid sequence of Bernoulli(1
2
) random variables independent of N . We wish to compute

P (
∑N

i=1Xi = 0). Conditionally given N = n,
∑N

i=1Xi is distributed binomial(n, 1
2
)

and the probability we see no heads in these n flips is (1
2
)n. Consequently, by the law

of total probability P (
∑N

i=1Xi = 0) =
∑∞

n=1(
1
2
)2n = 1

3
.

5. LetX and Y be jointly continuous random variables having the joint pdf f(x, y) = e−y

for 0 < x < y < ∞ and f(x, y) = 0 otherwise. Compute Var(X) and Var(X|Y ).

Solution: Compute the densities for X and Y and the conditional density for X
given Y :

fX(x) = e−x for x > 0,

fY (y) = ye−y for y > 0, and

fX|Y (x|y) =
f(x, y)

fY (y)
=

1

y
for 0 < x < y.

Notice that X is an exponential random variable with mean 1, and that the condi-
tional distribution of X given Y = y is uniform on (0, y).

Therefore, conditionally, the distribution of X given Y = y is that of yU where
U ∼ Uniform(0, 1); hence the conditional variance of X given Y = y is y2/12. Also,
since X is an exponential random variable with mean 1, we know

Var(X) = 1.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Linear Algebra

Tuesday, August 20, 2019

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let A be an n× n skew symmetric matrix. Prove that A is singular when n is odd.

Solution: Since A = −AT , we have det(A) = (−1)ndet(AT ) = − det(A) implies
det(A) = 0.

2. Suppose A and B are two positive definite n×n real matrices. Prove that A−1+B−1

exists and is invertible.

Solution: Since each of A and B are positive definite, they have non-zero determinant
and are therefore each invertible. Moreover, A−1 and B−1 are also positive definite,
and the sum of positive definite matrices is positive definite.

3. Let A and B be any two n×n real matrices that share a common eigenvector. Prove:
det(AB −BA) = 0.

Solution: Let v be the common eigenvector so that there exist complex numbers a and
b such that Av = av and Bv = bv. Since v ̸= 0 and (AB−BA)v = A(bv)−B(av) =
bav − abv = 0, we’ve shown the columns of AB − BA are linearly dependent and
therefore the matrix AB −BA is singular.

4. Let V be a finite-dimensional vector space and let T be a linear operator on V .
Suppose that rank(T 2) = rank(T ). Prove that the range and null space of T have
only the zero vector in common.

Solution: Let {v1, . . . , vn} be a basis for V . Then the rank of T is the maximum
number of linearly independent vectors in the set {Tv1, . . . , T vn}. Suppose the rank
of T equals k and suppose without loss of generality that {Tv1, . . . , T vk} is a linearly
independent set (it might be that k = 1). Then {Tv1, . . . , T vk} is a basis for the
range of T . It follows that {T 2v1, . . . , T

2vk} spans the range of T 2, and since the
dimension of the range of T 2 is also equal to k, {T 2v1, . . . , T

2vk} must be a basis for
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the range of T 2. Now suppose v is in the range of T . Then v = c1Tv1 + · · ·+ ckTvk.
Suppose v is also in the null space of T . Then, for some scalars c1, . . . , ck, 0 = T (v) =
T (c1Tv1 + · · · + ckTvk) = c1T

2v1 + · · · + ckT
2vk. But {T 2v1, . . . , T

2vk} is a basis,
so T 2v1, . . . , T

2vk are linearly independent; thus it must be that c1 = · · · = ck = 0,
which implies v = 0. Thus we have shown that if v is in both the range of T and the
null space of T then v = 0, as required.

Alternative solution:

T is a linear mapping from V onto W := im(T ) and the restriction T |W of T to W
is a linear mapping onto U := im(T 2). By the rank assumption, dim(W ) = dim(U)
so the dimension of the image of T |W is the same as the dimension of its domain. It
follows that the dimension of the null space of T |W is zero. Thus, if w = Tv for some
v ∈ V and Tw = 0 then w ∈ W and T |W (w) = 0. We conclude therefore that w = 0.

5. Decompose the following matrix into the sum of two rank-1 matrices:
1 2 −3 7 0 −2 5
1 2 −3 7 1 3 −2
0 0 0 0 1 5 −7
0 0 0 0 0 0 0

 .

Solution: The matrix is easily seen to be rank 2 as the following row echelon form
shows: 

1 2 −3 7 0 −2 5
0 0 0 0 1 5 −7
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 .

The first two row vectors in this echelon form also form a basis for the row space,
which gives us a good starting point:

1 2 −3 7 0 −2 5
1 2 −3 7 1 3 −2
0 0 0 0 1 5 −7
0 0 0 0 0 0 0

 =


1 2 −3 7 0 −2 5
1 2 −3 7 0 −2 5
0 0 0 0 0 0 0
0 0 0 0 0 0 0

+


0 0 0 0 0 0 0
0 0 0 0 1 5 −7
0 0 0 0 1 5 −7
0 0 0 0 0 0 0

 .

=


1
1
0
0

 [ 1 2 −3 7 0 −2 5
]
+


0
1
1
0

 [ 0 0 0 0 1 5 −7
]
.
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Alternative solution: Letting the 1st, 2nd, and 3rd rows of the matrix be denoted by
u, v, w, we have w = v − u so the matrix can be written

u
v

v − u
0

 =


u
0
−u
0

+


0
v
v
0

 =


1
0
−1
0

u+


0
1
1
0

 v.

Since u and v are non-zero, the row-ranks of the two matrices here are both 1.
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