
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Real Analysis

Monday, August 21, 2017

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Compute ∫ ∞

0

⌊x⌋e−x dx,

where ⌊x⌋ is the greatest integer less than or equal to x. Simplify completely.

Solution:∫ ∞

0

⌊x⌋e−x dx =
∞∑
n=0

∫ n+1

n

⌊x⌋e−x dx

=
∞∑
n=0

n

∫ n+1

n

e−x dx

=
∞∑
n=1

n(e−n − e−(n+1))

= e−1 + e−2 + e−3 + e−4 + · · · = e−1

1− e−1
=

1

e− 1
.

2. Prove that, if f : (−a, a) → R is C2 (with a > 0), one has

f(x) = f(0) +
1

2
(f ′(x) + f ′(0))x+ o(x2)

near x = 0.

Solution: Simply write

f(x) = f(0) + xf ′(0) +
x2

2
f ′′(0) + o(x2)

and
f ′(x) = f ′(0) + xf ′′(0) + o(x)

to compute
f(x)− xf ′(x)/2 = f(0) + xf ′(0)/2 + o(x2),

which gives the conclusion.
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3. Suppose (X, d) is a compact metric space. Let f : X → X be such that

d(f(x), f(y)) < d(x, y) for all x ̸= y ∈ X.

Show that there exists a unique x∗ ∈ X such that f(x∗) = x∗.
Hint: Consider the function ϕ(x) := d(x, f(x)) for x ∈ X.

Solution: The function ϕ(x) = d(x, f(x)) is seen to be continuous (this should be
proved rigorously in the student’s solution). SinceX is compact, ϕ(x) has a minimizer
by Weierstrauss’ theorem. Let this minimizer be x∗. We claim f(x∗) = x∗. If not,
consider y∗ = f(x∗). But then ϕ(y∗) = d(y∗, f(y∗)) = d(f(x∗), f(y∗)) < d(x∗, y∗) =
d(x∗, f(x∗)) = ϕ(x∗), which contradicts the fact that x∗ is the minimizer for ϕ.

The uniqueness of x∗ follows from the following argument. Suppose there exists
y∗ ̸= x∗ such that f(y∗) = y∗. d(f(x∗), f(y∗)) < d(x∗, y∗) = d(f(x∗), f(y∗)), which is
a contradiction.

4. Calculate the Fourier coefficients cn = 1
2π

∫ π

−π
e−inxf(x) dx of the function

f(x) =

{
+1 0 < x < π
−1 −π < x < 0

Use your result to establish the values of the following infinite series:

∞∑
k=0

1

(2k + 1)2
,

∞∑
k=1

1

k2
.

Carefully justify all steps.

Hint: Use Parseval’s theorem.

Solution: By elementary integrations

cn =
1− cos(nπ)

πin
=

{
2/πin n odd
0 n even

Thus, Parseval’s theorem gives∑
n odd

4

π2n2
=

1

2π

∫ π

−π

1 · dx = 1
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or
∞∑
k=0

1

(2k + 1)2
=

π2

8
,

taking into account both positive and negative n.

Now write

S =
∞∑
n=1

1

n2
=

∞∑
k=0

1

(2k + 1)2
+

∞∑
k=1

1

(2k)2
=

π2

8
+

1

4
S,

using absolute summability of the series to re-order it into sub-sums of even and odd
terms. Solving gives

S =
∞∑
k=1

1

k2
=

π2

6
.

5. Let m be a natural number and f : Rn → R be such that for every λ ∈ R and x ∈ Rn,
f(λx) = λmf(x) [Such functions are called homogeneous of degree m]. Show that for
all y ∈ Rn, we have

f(y) =
1

m

n∑
i=1

yi
∂f

∂xi

∣∣∣∣
x=y

Solution: For any y ∈ Rn, define g : R → R as g(λ) = f(λy). Since f(λy) = λmf(y),
we obtain that g′(λ) = mλm−1f(y). Also, applying the chain rule, we obtain that
g′(λ) = ∇f(λy)Ty. Thus, ∇f(λy)Ty = mλm−1f(y). Setting λ = 1 gives us the
desired relation.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Afternoon Exam–Probability

Monday, August 21, 2017

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 1:30 PM and end at 4:30 PM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Assume that the random variables X and Y are jointly Gaussian, with E(X) =
E(Y ) = 0, E(X2) = E(Y 2) = 1 and E(XY ) = ρ. Let a ∈ R be fixed. Prove that the
conditional distribution of Y given X ≥ a has a probability density function given
by

f(y|X ≥ a) =
1− Φ(a; ρy, 1− ρ2)

1− Φ(a; 0, 1)

e−y2/2

√
2π

where Φ(·;m,σ2) is the cumulative distribution function of a Gaussian variable with
mean m and variance σ2.

Solution: The joint density of X and Y is

g(x, y) =
1

2π
√

1− ρ2
exp

(
−1

2
(x, y)

(
1 ρ
ρ 1

)−1(
x
y

))

=
1

2π
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)

The conditional density is

f(y|X ≥ a) =

∫∞
a

g(x, y)dx

P (X ≥ a)
.

Let’s justify this quickly. For a subset y ∈ R, we have

P (Y ≤ y|X ≥ a) =
P (Y ≤ y,X ≥ a)

P (X ≥ a)
=

∫ y

∞

(∫∞
a

g(x, y′)dx

P (X ≥ a)

)
dy′

and the density is obtained by taking the derivative in y.

The denominator is by definition 1−Φ(a; 0, 1) since X ∼ N (0, 1). For the numerator,
we write

g(x, y) =
1√

2π(1− ρ2)
exp

(
−(x− ρy)2

2(1− ρ2)

)
e−

y2

2

√
2π

so that the integral with respect to x is

(1− Φ(a; ρy, 1− ρ2))
e−

y2

2

√
2π

which is the required expression.
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2. In general, we know uncorrelated random variables are not necessarily independent.
However, suppose X1 and X2 are Bernoulli random variable taking the values 0 and
1. Show that if X1 and X2 are uncorrelated then they are independent as well.

Solution: Suppose X1 and X2 are uncorrelated. Then E(X1X2) = P (X1 = 1, X2 =
1), E(X1) = P (X1 = 1), and E(X2) = P (X2 = 1). Therefore, X1 and X2 uncorre-
lated implies

P (X1 = 1, X2 = 1) = P (X1 = 1)P (X2 = 1). (1)

Now, using (1), P (X1 = 1, X2 = 0) = P (X1 = 1) − P (X1 = 1, X2 = 1) = P (X1 =
1) − P (X1 = 1)P (X2 = 1) = P (X1 = 1)[1 − P (X2 = 1)] = P (X1 = 1)P (X2 = 0),
that is,

P (X1 = 1, X2 = 0) = P (X1 = 1)P (X2 = 0). (2)

In a similar way,

P (X1 = 0, X2 = 1) = P (X1 = 0)P (X2 = 1). (3)

Finally, P (X1 = 0, X2 = 0) = 1−P ([X1 = 1]∪ [X2 = 1]) = 1−P (X1 = 1)−P (X2 =
1) + P (X1 = 1, X2 = 1) = 1 − P (X1 = 1) − P (X2 = 1)[1 − P (X1)] = (1 − P (X1 =
1))(1 − P (X2 = 1)) = P (X1 = 0)P (X2 = 0), and combining this with (1), (2), and
(3) we see X1 and X2 are independent as well.

3. Distribute n balls independently and uniformly at random among n boxes. Let Nn

denote the number of empty boxes. Show that for any ε > 0, there is a µn such that

P
( ∣∣∣∣Nn

n
− µn

∣∣∣∣ > ε
)
→ 0 as n → ∞.

Be sure to compute limn→∞ µn.

Solution: Let Ii = 1 is box i is empty, = 0 otherwise.

Then E(Ii) = P (Ii = 1) = (n−1
n
)n = (1 − 1

n
)n. Moreover, when i ̸= j, E(IiIj) =

P (Ii = 1, Ij = 1) = P (boxes i and j are empty) =
(
n−2
n

)n
= (1 − 2

n
)n. Therefore,

var(Ii) = (1− 1
n
)n − (1− 1

n
)2n and for i ̸= j, cov(Ii, Ij) = (1− 2

n
)n − (1− 1

n
)2n.

Now, E(Nn) = n(1− 1
n
)n so that µn = E(Nn/n) = (1− 1

n
)n → e−1 as n → ∞.

Also, var(Nn) = n var(I1) + n(n − 1)cov(I1, I2) = n
(
(1− 1

n
)n − (1− 1

n
)2n
)
+ n(n −

1)
(
(1− 2

n
)n − (1− 1

n
)2n
)
= n(1− 1

n
)n+n2(1− 2

n
)n−n(1− 2

n
)n−n2(1− 1

n
)2n. Therefore,
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var(Nn/n) =
1
n2var(Nn) =

(1− 1
n
)n

n
+(1− 2

n
)n− (1− 2

n
)n

n
− (1− 1

n
)2n. Notice, in this last

expression that as n → ∞ the first and third terms go to 0 while the second term
approaches e−2 and the last term approaches (e−1)2 = e−2 so that overall, as n → ∞,
var(Nn/n) → 0.

Let ε > 0. By the Chebyshev inequality, P
( ∣∣Nn

n
− µn

∣∣ > ε
)

≤ var(Nn/n)
ε2

→ 0 as

n → ∞, while µn = (1− 1
n
)n → 1/e as n → ∞.

4. Let Z1 and Z2 be independent standard normal random variables and let b > 0 be a
fixed constant. Find the pdf of U = bZ1

Z2
.

Solution: The transformation u = bz1/z2 and v = z2 has inverse z1 = uv/b and
z2 = v giving Jacobian determinant |J | = |v|/b. The joint pdf of U, V therefore is

fU,V (u, v) =
|v|
2πb

e−
u2v2

2b2 e−
v2

2 = |v|
2πb

e−
v2(u2+b2)

2b2 . It follows that the pdf of U is

fU(u) =

∫ ∞

−∞

|v|
2πb

e−
v2(u2+b2)

2b2 dv =
2

2πb

∫ ∞

0

ve−
v2(u2+b2)

2b2 dv =
b

π(u2 + b2)
−∞ < u < ∞,

which is the Cauchy distribution.

5. Compute the probability that a number chosen uniformly at random from the set of
positive divisors of 1099 is an integer multiple of 1088.

Solution: The prime factorization of 1099 is 299 · 599, so all divisors of 1099 have the
form 2a · 5b where a and b are integers with 0 ≤ a, b ≤ 99. Since there are 100 choices
for each of a and b, 1099 has 1002 positive integer divisors. Of these, the multiples
of 1088 = 288 · 588 must satisfy the inequalities 88 ≤ a, b ≤ 99. Thus, there are 12
choices for each of a and b, so 122 of the 1002 divisors of 1099 are multiples of 1088.
Consequently, the desired probability is

122

1002
=

9

625
.
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Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session
Morning Exam–Linear Algebra

Tuesday, August 22, 2017

Instructions: Read carefully!

1. This closed-book examination consists of 5 problems, each worth 5 points. The
passing grade is 2/3 of the total points. Partial credit will be given as appropriate;
each part of a problem will be given the same weight. If you are unable to prove
a result asserted in one part of a problem, you may still use that result to help in
answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been arranged systematically by difficulty. If a problem
directs you to use a particular method of analysis, you must use it in order to receive
substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. This examination will begin at 8:30 AM and end at 11:30 AM. You may leave before
then, but in that case you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let A be a nonsingular n × n matrix with integer entries. Show that A−1b is an
integer vector (i.e., all entries are integers) for every integral vector b ∈ Zn if and
only if det(A) = 1 or −1.

Solution: If det(A) = 1 or −1, then the result follows from Cramer’s rule, or the

cofactor formula for the inverse: A−1 = CT

det(A)
; Since CT also has integer entries and

det(A) = 1 or −1, A−1 has integer entries and so A−1b is an integer vector.

Conversely, if A−1b is integral for every integral b, A−1ei is integral, where ei is the
i-th standard unit vector. Thus, every column of A−1 has integer entries. Therefore,
det(A−1) is an integer. However, det(A) det(A−1) = det(I) = 1 and both det(A) and
det(A−1) are integers. Thus, they have to be 1 or −1.

2. Determine, with proof, the set S of all real solutions (x, y, z) to the following system
of three equations as a function of a:

3za2 − 3a+ x+ y + 1 = 0

3x− a− y + z(a2 + 4)− 5 = 0

za2 − a− 4x+ 9y + 9 = 0.

Solution: Let A denote the coefficient matrix

A :=

 1 1 3a2

3 −1 a2 + 4
−4 9 a2

 ,

let u denote the vector u := [x, y, z]T , and let v := [3a− 1, a + 5, a− 9]T denote the
right-hand-side vector. Then the system can be written equivalently as Au = v.

The determinant of A equals 52(a2 − 1). We break the solution into cases:

(a) If a /∈ {−1, 1}, then detA ̸= 0. In this case

A−1 = [52(a2 − 1)]−1

 −10a2 − 36 26a2 4a2 + 4
−7a2 − 16 13a2 8a2 − 4

23 −13 −4


and S is a singleton with unique element

u = A−1v =

[
2a

a+ 1
,− 1

a+ 1
,

1

a+ 1

]T
.
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(b) If a ∈ {−1, 1}, then

A :=

 1 1 3
3 −1 5
−4 9 1

 .

In this case the system reduces to the following system of three equations in the
two variables (s, t) := (x+ 2z, y + z):

s+ t = 3a− 1

3s− t = a+ 5

−4s+ 9t = a− 9.

It is easily checked that if a = −1 there is no solution (s, t) to this system, and
hence S = ∅; and that if a = 1 there is a unique solution (s, t) = (2, 0) to this
system, and hence S is the infinite set S = {[2y + 2, y,−y]T : y ∈ R}.

3. Let S and T be two subspaces in Rn. Show that if there exists a n×n matrix A such
that T ⊂ {y : y = Ax, x ∈ S} then dim(S) ≥ dim(T ).

Solution: It is trivially true if dim(T ) = 0. Let we assume dim(T ) = k > 0
and let {y1, · · · yk} be a basis of T . It follows from the assumption that there exist
{x1, · · · , xk} such that yi = Axi. Suffices it to show that {xi} are linearly indepen-
dent. This must be true otherwise we get the contradiction that if {xi} are linearly
dependent then so are vectors {yi}.

4. An n × n matrix H is called a Hadamard matrix provided the entries of H consist
only of +1 or −1 and HTH = nI, where, of course, I is the n × n identity. The
following are all examples of Hadamard matrices:

[
1 1

−1 1

]
,


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ,


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

Let H be a Hadamard matrix. Prove: HT is a Hadamard matrix.

Solution: HT still contains only +1 and −1. SinceHTH = nI it followsH−1 = 1
n
HT .

Therefore, nI = nHH−1 = nH( 1
n
HT ) = HHT .
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5. Let A and B be n × n matrices and suppose that {v1, v2, . . . , vn} are linearly inde-
pendent vectors that are eigenvectors for both A and B. (The associated eigenvalues
may be different.)

Prove that A and B commute.

Solution: Let S be the n × n matrix whose columns are the vectors v1, v2, . . . , vn.
Then S−1AS = ΛA and S−1BS = ΛB where ΛA,ΛB are n× n diagonal matrices.

We can therefore write A = SΛAS
−1 and B = SΛBS

−1. Since diagonal matrices
commute we have

AB =
(
SΛAS

−1
) (

SΛBS
−1
)
= SΛAΛBS

−1

= SΛBΛAS
−1 =

(
SΛBS

−1
) (

SΛAS
−1
)
= BA

as required.
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