
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session

Friday, August 26, 2016

Instructions: Read carefully!

1. This closed-book examination consists of 15 problems, each worth 5 points. The
passing grade has been set at 50 points, i.e., 2/3 of the total points. Partial credit
will be given as appropriate; each part of a problem will be given the same weight.
If you are unable to prove a result asserted in one part of a problem, you may still
use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been grouped by topic, but there are roughly equally many
mainly motivated by each of the three areas identified in the syllabus (linear algebra;
real analysis; probability). Nor have the problems been arranged systematically by
difficulty. If a problem directs you to use a particular method of analysis, you must
use it in order to receive substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. The examination will begin at 8:30 AM; lunch and refreshments will be provided.
The exam will end just before 5:00 PM. You may leave before then, but in that case
you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Let a be a nonzero vector in Rn with all its components nonnegative and let A be
the n× n matrix each of whose columns is equal to a. Show that A has exactly one
positive eigenvalue.

Solution: Because A is of rank one, A has λ = 0 as an eigenvalue with multiplicity
n− 1. Now

Aa = [a, a, . . . , a]a = [a, a, . . . , a]


a1
a2
...
an

 =

(
n∑
i=1

ai

)
a,

so
∑n

i=1 ai is the other eigenvalue with associated eigenvector a. Moreover, since all
the components of a are nonnegative with at least one component positive (since a
is nonzero), we see the eigenvalue

∑n
i=1 ai is positive.

2. Justify that there exist unique a, b, c ∈ R minimizing∫ 1

−1
(x3 − a− bx− cx2)2dx

and compute the optimal a, b, and c.

Solution: In the finite-dimensional space R3[X] of polynomials of degree at most
three, F equals

F (a, b, c) = ‖X3 − (a+ bX + cX2)‖2

for the norm on R3[X] defined by

‖p‖2 =

∫ 1

−1
p(x)2dx.

F is thus a strictly convex function and has a unique minimizer. It is characterized
by the equations (∂F )/(∂a) = (∂F )/(∂b) = (∂F )/(∂c) = 0 which gives

∂F

∂a
= 0⇔

∫ 1

−1
−2(x3 − a− bx− cx2)dx = 0⇔ 4a+

4

3
c = 0,

∂F

∂b
= 0⇔

∫ 1

−1
−2x(x3 − a− bx− cx2)dx = 0⇔ −4

5
+

4

3
b = 0,

∂F

∂c
= 0⇔

∫ 1

−1
−2x2(x3 − a− bx− cx2)dx = 0⇔ 4

3
a+

4

5
c = 0.
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Thus the minimizer is given by the linear system:
3a+ c = 0
5b− 3 = 0
5a+ 3c = 0

giving a = c = 0 and b = 3/5.

Solution 2: The problem amounts in minimizing the distance of X3 to the subspace
R2[X]. Since the norm is an Euclidean norm, the solution is therefore the orthogonal
projection of X3 on R2[X]. Now, we observe that

〈X3, 1〉 =

∫ 1

−1
x3dx = 0,

〈X3, X2〉 =

∫ 1

−1
x5dx = 0,

so X3 is orthogonal to the subspace of R2[X] generated by (1, X2). The projection
of X3 on R2[X] is therefore equal to bX with

b =
1

‖X‖2
〈X3, X〉 =

(∫ 1

−1
x2dx

)−1(∫ 1

−1
x4dx

)
=

3

2
× 2

5
=

3

5
.

3. Cards are drawn one by one, at random, and without replacement, from a standard
deck of 52 playing cards. What is the probability that the fourth Heart is drawn on
the tenth draw? (Do not simplify to a decimal number.)

Solution: Let A be the event that there are exactly three Hearts drawn in the first
nine draws, and let B be the event that the tenth draw is a Heart.

Rephrasing its description, A is the event that in choosing 9 cards, 3 are chosen from
the 13 Hearts and 6 from the 39 non-Hearts, so using an equally-likely probability
model, we have

P [A] =

(
13
3

)(
39
6

)(
52
9

) .

Conditional upon event A, B is the event that a randomly chosen card drawn from
a (partial) deck of 10 Hearts and 33 non-Hearts is a Heart. Thus,

P [B|A] =
10

43
.
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By the multiplication rule for the probability of an intersection event,

P [AB] = P [B|A]P [A] =
10

43

(
13
3

)(
39
6

)(
52
9

) =
27417

464830
.

Alternatively, randomly pick 10 cards, one at a time, from the deck. Let E be the
event that 4 of the 10 are hearts, and let F be the event that the last card is a heart.
Given E, all

(
10
4

)
positions for the four hearts are equally likely, and

(
9
3

)
of the possible

positions have a heart appearing last. Consequently,

P [F |E] =

(
9
3

)(
10
4

) =
4

10
.

Thus

P [E ∩ F ] = P [E]× P [F |E] =

(
13
4

)(
39
6

)(
52
10

) × 4

10
=

27417

464830
.

4. Show that for any three real numbers a, b, and c, the following inequality holds:(
a

2
+
b

3
+
c

6

)2

≤ a2

2
+
b2

3
+
c2

6
.

Solution: We apply Cauchy–Schwartz inequality to get(
a

2
+
b

3
+
c

6

)2

=

(
1√
2
· a√

2
+

1√
3
· b√

3
+

1√
6
· c√

6

)2

≤

((
1√
2

)2

+

(
1√
3

)2

+

(
1√
6

)2
)((

a√
2

)2

+

(
b√
3

)2

+

(
c√
6

)2
)

=
a2

2
+
b2

3
+
c2

6
.

Alternatively, consider a random variable X taking values a, b, and c with probabili-
ties 1/2, 1/3, and 1/6, respectively. X has a nonnegative variance so E[X]2 ≤ E[X2].
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5. (a) Show that if a complex matrix A ∈ Cn×n satisfies x∗Ax = 0 for all complex
vectors x ∈ Cn, then A is a zero matrix.

(b) Show that if n ≥ 2, then there exists a nonzero real matrix A ∈ Rn×n such that
xTAx = 0 for all real vectors x ∈ Rn.

Solution: (a) Let A ∈ Cn×n be a matrix satisfying x∗Ax = 0 for all x ∈ Cn. Let
x, y ∈ Cn be two arbitrary vectors. Then both (x+y)∗A(x+y) and (x+iy)∗A(x+iy)
are zero by the assumption. Combining this with x∗Ax = y∗Ay = 0, we get x∗Ay = 0.
Since x and y can be chosen arbitrarily, one can choose x = ei, y = ej, for any
i, j = 1, . . . , n, where ek is the k-th standard unit vector in Cn. Since e∗iAej = aij,
the (i, j)-th entry of A, we get aij = 0, for all i, j = 1, . . . , n. In other words, A = 0.

(b) Since n ≥ 2, there exists a nonzero real A ∈ Rn×n s.t. A = −AT . One possible
choice for A is A = [aij], with a12 = −1, a21 = 1, and aij = 0 elsewhere. For any
matrix A ∈ Rn×n with A = −AT , we have xTAx = 0 since the scalar xTAx satisfies

xTAx = (xTAx)T = xTATx = xT (−A)x = −xTAx.

6. Let X1 and X2 be two iid random variables with the uniform distribution over [0, 1].
Define Y = min(X1, X2) and Z = max(X1, X2). Compute the covariance cov(Y, Z).

Solution: First, we observe that

P{Z ≤ z} = P{X1 ≤ z}P{X2 ≤ z} = z2,

which implies Z has probability density 2z, for z ∈ [0, 1]. This in turns yields the
expectation E{Z} = 2

3
. As for the minimum Y , we deduce that

P{Y ≥ y} = P{X1 ≥ y}2 = (1− y)2,

which implies through integration that E{Y } = 1
3
.

Since Y Z = X1X2 we have

E{Y Z} = E{X1X2} =
1

4
.

Finally, the covariance is given by

cov(Y, Z) = E{Y Z} − E{Y }E{Z} =
1

36
.
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7. Let f : [a, b] → R be such that the sets {x : f(x) < α} are open for all α ∈ R (such
a function is called upper semi-continuous). Prove that f has a maximizer, i.e., that
there exists x0 ∈ [a, b] such that f(x) ≤ f(x0) for all x ∈ [a, b].

Solution: We may assume a < b. Let γ = supx∈[a,b] f(x) ≤ +∞, and let yn be a
strictly increasing sequence that converges to γ. The set Fn = {x ∈ [a, b] : f(x) ≥ yn}
is, by assumption, a closed set, and is nonempty by the denition of the supremum.
Being closed subsets of the compact set [a, b], the Fn are also compact. Thus, we
have a nested sequence F1 ⊇ F2 ⊇ F3 · · · of nonempty compact sets, so by the
Cantor intersection theorem the intersection

⋂n
i=1 Fi is also nonempty. If x is any

element of this intersection, then f(x) ≥ yn for all n, which is only possible if γ is
finite. It follows that f(x) ≥ limn→∞ yn = γ ≥ f(x), hence f(x) = γ. This proves
that x is a maximizer of f.

Solution 2: Let γ = supx∈[a,b] f(x) and take (xn)n∈N to be a sequence in [a, b] such
that f(xn) → γ. Since [a, b] is compact, we can, if necessary, replace the sequence
by a convergent subsequence, so we can assume xn → x∗ for some x∗ ∈ [a, b]. By
upper-semi-continuity, for any ε > 0 the set

{x ∈ [a, b] : f(x) < f(x∗) + ε}

is an open set containing x∗. Thus, there exists δ > 0 such that f(x) < f(x∗) + ε for
all |x− x∗| < δ. Consequently,

γ = lim sup
n→∞

f(xn) ≤ f(x∗).

We conclude that γ < +∞ and f(x∗) = γ, which shows that x∗ is a maximizer of f .

8. Three points, A, B, and C, are chosen uniformly and independently on a circle of
radius 1.
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What is the expected perimeter of triangle ABC?

Hint: Try first to compute the expected value of the length of AB.

Solution: Without loss of generality, place A at (1, 0) and B at (cos t, sin t) for
t ∈ [0, 2π]. The length of segment AB is√

(cos t− 1)2 + sin2 t =
√

2− 2 cos t.

Therefore the expected length of this segment is

1

2π

∫ 2π

0

√
2− 2 cos t dt =

8

2π
=

4

π
.

Finally, by linearity of expectation, the expected perimeter of the triangle is 12/π.

9. Let n be a positive integer and let An be the n× n matrix with entries as follows:

• All entries above the diagonal are 1.

• All entries on the diagonal are 0.

• All entries below the diagonal are −1.
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For example,

A4 =


0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

 .
Prove that det(An) = 0 for n odd and det(An) = 1 for n even.

Hint: Start by adding the last column to the first.

Solution: For n = 1 or 2 we have

detA1 = det[0] = 0 and detA2 = det

[
0 1
−1 0

]
= 1.

For n > 2 we can write An in block form:

An =

 0 1Tn−2 1
−1n−2 An−2 1n−2
−1 −1Tn−2 0

 ,
where 1n−2 denotes the (n− 2)× 1 vector all of whose entries are 1.

Using the hint, we add the last column of An to the first (this doesn’t change the
determinant):

detAn = det

 1 1Tn−2 1
0n−2 An−2 1n−2
−1 −1Tn−2 0

 ,
where 0n−2 denotes the (n − 2) × 1 vector all of whose entries are 0. Next add the
first row of the result to the last:

detAn = det

 1 1Tn−1 1
0n−1 An−2 1n−1

0 0Tn−1 1

 .
Cofactor expansion of this latter matrix down the first column (and then across the
last row) gives detAn = detAn−2 and the result follows by induction.

10. Let Ω = (ωij) be a symmetric real n × n matrix with the property that Ω1n = 0,
where 1n denotes the n× 1 vector all of whose entries are 1, and write

Ω =

(
A b
bT c

)
,
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where A is (n− 1)× (n− 1), b is (n− 1)× 1, and c is a scalar. If we define

Γ = A− b1Tn−1 − 1n−1b
T + c1n−11

T
n−1.

show that
Γ = (I + J)A(I + J),

where J denotes the (n−1)×(n−1) matrix all of whose entries are 1. If A is positive
definite can we conclude that Γ is positive definite as well? Justify your answer.

Hint: First use the fact that Ω1n = 0 to find expressions for b and c in terms of A.

Solution: Since Ω1n = 0, we have(
A b
bT c

)(
1n−1

1

)
=

(
A1n−1 + b
bT1n−1 + c

)
=

(
0n−1

0

)
,

and this leads to b = −A1n−1 and c = 1Tn−1A1n−1. Observe that c is the sum of the
entries of A, and that c1n−11

T
n−1 = JAJ.

Substituting the expressions for b and c into the definition of Γ gives

Γ = A+ A1n−11
T
n−1 + 1n−11

T
n−1A+ (1Tn−1A1n−1)1n−11

T
n−1.

= A+ AJ + JA+ JAJ = (I + J)A(I + J).

If A is positive definite, so is Γ. To see this, for any non-zero (n−1)-vector x we have
xTAx > 0. In addition, since the matrix I+J is invertible (it’s inverse is I− (1/n)J),
letting y = (I + J)x, we have that y is non-zero, so

xTΓx = xT (I + J)A(I + J)x = yTAy > 0.

11. Let f be a uniformly continuous function on a finite interval (a, b). Is it true that f
must be bounded on (a, b), that is sup(a,b) |f(x)| < ∞? If true, prove it; otherwise,
give a counterexample.

Solution: The statement is true. If we take any ε > 0 there exists δ > 0 such that for
all x, y ∈ (a, b) with |x − y| ≤ δ we have |f(x) − f(y)| ≤ ε. Taking a finite sequence
of points a = x0 < x1 < x2 < · · · < xn = b with xi+1 − xi ≤ δ, we have

|f(x)− f(y)| ≤ ε
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for all x, y ∈ [xi, xi+1] and i = 0, . . . , n − 1 when x 6= a and y 6= b. Note that as a
consequence |f(xi+1)− f(xi)| ≤ ε for i = 1, 2, 3, . . . , n− 2.

To complete the proof, we show |f(x)| ≤ |f(x1)| + nε for all x ∈ (a, b). First, if
x ∈ (a, x1), then

|f(x)| = |f(x1)− f(x) + f(x1)|
≤ |f(x1)|+ |f(x1)− f(x)| ≤ |f(x1)|+ ε

≤ |f(x1)|+ nε

Next, if x ∈ [xi, xi+1) with 1 ≤ i ≤ n− 1 we have

|f(x)| = |f(x1) + [f(x2)− f(x1)] + [f(x3)− f(x2)] + · · ·+ [f(x)− f(xi)]|
≤ |f(x1)|+ iε ≤ |f(x1)|+ nε.

Solution 2: Let ε > 0. Since f : (a, b) → R is uniformly continuous, there exists
δ > 0 such that |f(x) − f(y)| < ε whenever x, y ∈ (a, b) with |x − y| < δ. Without
loss of generality, we assume δ < (b − a)/2. Now f restricted to the closed interval
[a + δ

2
, b − δ

2
] is bounded, say, by M . Moreover, if x ∈ (a, a + δ

2
], then |f(x)| ≤

|f(x) − f(a + δ
2
)| + |f(a + δ

2
)| < ε + M ; similarly, if x ∈ [b − δ

2
, b), |f(x)| ≤ |f(x) −

f(b− δ
2
)|+ |f(b− δ

2
)| < ε+M . This shows f is bounded on the interval (a, b).

12. Let A be the n× n matrix 

1 λ 0 0 . . . 0
0 1 λ 0 . . . 0
0 0 1 λ . . . 0
...

...
...

. . . . . .
...

0 0 0 . . . 1 λ
0 0 0 . . . 0 1


Find an invertible n× n matrix B such that BAB−1 = AT .

Hint: Take B to be a permutation matrix.

Solution: Observe that aij depends only on the difference i− j, so

(AT )i,j = aj,i = an+1−i,n+1−j.
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Take B = (bi,j) to be the permutation matrix corresponding to the permutation that
reverses order, i.e., 

0 0 0 . . . 0 1
0 0 0 . . . 1 0
...

...
...

...
...

...
0 0 1 . . . 0 0
0 1 0 . . . 0 0
1 0 0 . . . 0 0


,

i.e.,

bi,j =

{
1 if i+ j = n+ 1
0 otherwise .

Then

(BB)i,j =
∑
k

bi,kbk,j =
∑

k:k=n+1−i,n+1−j

bi,kbk,j =

{
1 if i = j
0 otherwise,

that is, B = B−1. Furthermore, we have

(AB)i,j =
∑
k

ai,kbk,j =
∑

k=n+1−j

aik = ai,n+1−j,

the matrix obtained by reversing the columns of A. Similarly, BA is the matrix
obtained by reversing the rows of A. Thus,

(BAB−1)ij = an+1−i,n+1−j = aj,i.

13. Consider n people S1, . . . , Sn. S1 receives a binary information “yes” or “no” and
transmits it to S2, who transmits it to S3, and so on, until person Sn. Each person
transmits the information that he/she hears with probability p and the opposite
information with probability 1− p, independently from the others. Denote by Ai the
event “person i transmits the initial information” and by pi its probability. Find a
recursion relation between pi and pi−1 and deduce the probability pn that the right
information is received by the last person. What happens to pn as n → ∞ for
p ∈ (0, 1)?

Hint: Replace the recursion for pn by a recursion for pn − 1
2
.

Solution: We can write
P [Ai|Ai−1] = p,
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and
P [Ai|Aci−1] = 1− p,

so

pi = P [Ai] = pP [Ai−1] + (1− p)P [Aci−1]

= ppi−1 + (1− p)(1− pi−1)
= (2p− 1)pi−1 + 1− p.

Subtracting 1
2

from both sides we obtain

pi −
1

2
= (2p− 1)pi−1 + 1− p− 1

2
= (2p− 1)(pi−1 −

1

2
).

Consequently

pn −
1

2
= (2p− 1)n−1(p1 −

1

2
) = (2p− 1)n−1(p− 1

2
), n = 1, 2, 3, . . . .

For any choice of p ∈ (0, 1) we see that pn − 1
2
→ 0 as n→∞ so pn → 1

2
.

14. Laurel and Hardy are planning to meet between 5pm and 6pm. They agree that each
one, when he gets there, will wait for the other for at most 10 minutes. Assuming that
they arrive at the meeting point independently and at times uniformly distributed
between 5pm and 6pm, what is the probability that they manage to meet?

Solution: Let’s denote by X and Y the random variables corresponding to Laurel and
Hardy’s arrival times. We can simplify the problem a little bit by assuming that X
and Y are defined on the interval [0, 1], with 0 corresponding to 5pm and 1 to 6pm.
Then, the probability of meeting is the probability of the event A = {|X − Y | ≤ 1

6
}.

Let’s consider the complementary event Ac:

P (Ac) = P (|X − Y | > 1

6
) = P (Y > X +

1

6
) + P (Y < X − 1

6
)

=

∫ 1− 1
6

0

∫ 1

x+ 1
6

dy dx+

∫ 1

1
6

∫ x− 1
6

0

dy dx

These two integrals correspond to the areas of two right triangles of sides 1− 1
6

and
1− 1

6
; therefore P (Ac) = (1− 1

6
)2, which gives P (A) = 11/36 ≈ 0.31.
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15. Let f be a real-valued continuous function defined on the interval [a, b]. Suppose that∫ x

a

f(t) dt =

∫ b

x

f(t) dt for all x ∈ [a, b].

Prove that f(x) = 0 for all x ∈ [a, b].

Solution: Define a function F : [a, b]→ R by

F (x) :=

∫ x

a

f(t) dt−
∫ b

x

f(t) dt.

It then follows that F (x) = 0 for all x ∈ [a, b]. Combining this fact with the funda-
mental theorem of calculus allows us to conclude for all x ∈ (a, b) that

0 = F ′(x) = 2f(x)

Finally, by continuity f(x) = 0 for x = a, b.
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