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Introductory Examination–Summer Session

Wednesday, August 19, 2015

Instructions: Read carefully!

1. This closed-book examination consists of 15 problems, each worth 5 points. The
passing grade has been set at 50 points, i.e., 2/3 of the total points. Partial credit
will be given as appropriate; each part of a problem will be given the same weight.
If you are unable to prove a result asserted in one part of a problem, you may still
use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been grouped by topic, but there are roughly equally many
mainly motivated by each of the three areas identified in the syllabus (linear algebra;
real analysis; probability). Nor have the problems been arranged systematically by
difficulty. If a problem directs you to use a particular method of analysis, you must
use it in order to receive substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. The examination will begin at 8:30 AM; lunch and refreshments will be provided.
The exam will end just before 5:00 PM. You may leave before then, but in that case
you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Consider families of n children, with n ≥ 2. Let A be the event that a family has
children of both sexes, and let B be the event that there is at most one girl in the
family. Show that the only value of n for which the events A and B are independent
is n = 3, assuming that each child has probability 1/2 of being a boy.

Solution: We have

P (A) = 1− P (Ac) = 1−
(
P (all boys) + P (all girls)

)
= 1− (

1

2n
+

1

2n
) =

2n−1 − 1

2n−1
,

and

P (B) = P (all boys) + P (one girl) =

(
1

2

)n

+ n

(
1

2

)(
1

2

)n−1

=
n+ 1

2n
,

while
P (A ∩B) = P (one girl) =

n

2n
.

Since A and B are independent events if and only if P (A ∩ B) = P (A)P (B), we
verify this condition if and only if

n

2n
= P (A)P (B) =

2n−1 − 1

2n−1
· n+ 1

2n
⇐⇒ 2n−1 = n+ 1.

A direct substitution shows that this identity does not hold for n = 2 and holds
for n = 3. We now prove by induction that 2n−1 > n + 1 for n ≥ 4. This is true
for n = 4 since 8 = 24−1 > 5 = 4 + 1. Suppose k ≥ 4 and 2k−1 > k + 1. Then
2k = 2(2k−1) > 2(k + 1) > k + 2, which completes the induction argument.

2. Suppose
∑∞

n=0 anx
n and

∑∞
n=0 bnx

n are two power series having the same radius of
convergence ρ > 0 and

∑∞
n=0 anx

n =
∑∞

n=0 bnx
n for |x| < ρ. Prove that the two series

are identical, that is, an = bn for n = 0, 1, 2, . . . .

Solution: Since a0+a1x+a2x
2+· · · = b0+b1x+b2x

2+· · · when |x| < ρ, in particular,
when x = 0 it immediately follows that a0 = b0. Furthermore, after subtracting this
common term from each series we have a1x+a2x

2 +a3x
3 +· · · = b1x+b2x

2 +b3x
3 +· · ·

for |x| < ρ. Clearly, each of these series has the same radius of convergence as the
original series. We can write the last equivalence as

x(a1 + a2x+ a3x
2 + · · · ) = x(b1 + b2x+ b3x

2 + · · · ),
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or, equivalently, if x 6= 0, as

a1 + a2x+ a3x
2 + · · · = b1 + b2x+ b3x

2 + · · ·

when 0 < |x| < ρ. It follows immediately that these series have radius of convergence
ρ since

lim sup
n→∞

|an+1|1/n = lim sup
n→∞

(
|an+1|

1
n+1

)n+1
n

=
1

ρ
.

Now, since a1 + a2x+ a3x
2 + · · · = b1 + b2x+ b3x

2 + · · · for 0 < |x| < ρ, by letting x
tend to 0 through non-zero values, it follows that a1 = b1.

By continuing in this manner an inductive argument shows that an = bn for all
n = 0, 1, 2, . . . .

3. A four-digit number is selected at random. What is the probability that its leading
digit is strictly larger than its second digit, its second digit is strictly larger than its
third digit, and its third digit is strictly larger than its fourth digit. [Note that the
leading digit of an n-digit number is nonzero.]

Solution: Use an equally-likely model, in which each of the possible 4-digit numbers
are equally likely.

For the denominator, the leading digit can be 1, 2, 3, . . . , 9, but not 0, while each of
the other digits can be 0, 1, 2, 3, . . . , 9, so by the basic counting principle, there are
9(10)3 = 9000 possible 4-digit numbers.

For the numerator, the 4 digits must be different, and must be in decreasing order.
Thus, each four digit number in the event is obtained by choosing a subset of 4 or
the 10 possible digits and placing them in decreasing order (the leading digit is then
automatically nonzero).

The desired probability is then(
10
4

)
9000

=
210

9000
=

7

300
(= .023333 . . .).

4. Suppose that f : [−1, 1]→ R is a Riemann integrable function with∫ 1

−1

f(x)2dx <∞
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and that ∫ 1

−1

f(x) dx =

∫ 1

−1

f(x)(xn + xn+1) dx

for all n = 0, 1, 2, 3, ....

Prove that
∫ 1

−1
f(x)g(x)dx = 0 for all functions g continuous on [−1, 1].

Solution: Let

‖f‖2 =

√∫ 1

−1

f(x)2dx.

From the Cauchy–Schwarz inequality, we have, for all n ≥ 0,∣∣∣∣∫ 1

−1

f(x) dx

∣∣∣∣ =

∣∣∣∣∫ 1

−1

f(x)(xn + xn+1) dx

∣∣∣∣
≤ ‖f‖2

(∫ 1

−1

(xn + xn+1)2dx

)1/2

= ‖f‖2

(
2

2n+ 1
+

2

2n+ 3

)1/2

,

which implies that ∫ 1

−1

f(x) dx = 0.

The stated condition then implies that∫ 1

−1

f(x)xn+1 dx = −
∫ 1

−1

f(x)xn dx

for all n = 0, 1, 2, 3, .... This implies by induction that∫ 1

−1

f(x)xn dx = 0

for all n = 0, 1, 2, 3, .... The Weierstrass approximation theorem states that for any
continuous function g on [−1, 1] and ε > 0, there is a polynomial p(x) such that
maxx∈[−1,1] |g(x)− p(x)| < ε, so that, using Cauchy–Schwarz again,∣∣∣∣∫ 1

−1

f(x)g(x) dx

∣∣∣∣ =

∣∣∣∣∫ 1

−1

f(x)[g(x)− p(x)] dx

∣∣∣∣
≤ ‖f‖2

(∫ 1

−1

[g(x)− p(x)]2dx

)1/2

≤
√

2ε‖f‖2.
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Because ε is arbitrary, ∫ 1

−1

f(x)g(x) dx = 0

for any continuous function g.

5. Let A ∈ Rn×n be a symmetric positive semidefinite matrix for some n ≥ 1. Prove
that xTAx = 0 if and only if Ax = 0.

Solution: If Ax = 0, then clearly xTAx = 0, which proves the “if” direction.

For the “only if” direction, suppose that xTAx = 0. Since A is symmetric and positive
semidefinite, we know that x can be represented in a basis consisting of orthonormal
eigenvectors, i.e., that

x =
n∑

i=1

αivi =
∑
i∈Λ+

αivi +
∑
i∈Λ0

αivi (1)

for some scalars {αi}ni=1, where {vi}ni=1 are a set of orthonormal eigenvectors for A
with associated eigenvalues {λi}ni=1, Λ+ = {i : λi > 0}, and Λ0 = {i : λi = 0}.
(Recall that all eigenvalues of A are nonnegative since A is positive semidefinite by
assumption.) Using (??) and the orthogonality of the eigenvectors {vi}, we may
conclude that

0 = xTAx =
n∑

i=1

α2
iλi =

∑
i∈Λ+

α2
iλi +

∑
i∈Λ0

α2
iλi =

∑
i∈Λ+

α2
iλi. (2)

Since λi > 0 for i ∈ Λ+, we know from (??) that αi = 0 for all i ∈ Λ+, which when
combined with the identity in (??) means that

x =
∑
i∈Λ0

αivi. (3)

Since Avi = λivi = 0 for all i ∈ Λ0 (i.e., vi ∈ Null(A) for all i ∈ Λ0), we may conclude
from (??) that x ∈ Null(A), i.e., that Ax = 0. This completes the proof.

6. Let X ∈ RD×N for some positive integers D and N , and Z ∈ RD×N be a random
matrix whose ND entries are independent, each zij being a Bernoulli random variable
with parameter p, i.e.,

P [zij = k] = (1− p)1−kpk for k ∈ {0, 1},
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and for all i = 1, . . . , D and j = 1, . . . , N . Prove that the matrix

Γ := Y TY + (p− 1)diag(Y TY ) with Y :=
1

p
(Z �X)

satisfies E[Γ] = XTX, where � denotes the entry-wise product of matrices and

(diag(Y TY ))ij =

{
0 if i 6= j,

(Y TY )ij if i = j.

Solution: Let yi denote the ith column of Y . We consider two cases.

If j 6= i, then

Γij = (Y TY )ij = yTi yj =
1

p2

D∑
k=1

xkixkjzkizkj.

It follows that

E[Γij] =
1

p2

D∑
k=1

xkixkjE[zkizkj] =
D∑

k=1

xkixkj = xTi xj = (XTX)ij,

where we used E[zkizkj] = E[zki]E[zkj] because zk,i and zk,j are independent, and
E[zki] = 0 · (1− p) + 1 · p = p.

If j = i, then

Γii = (Y TY )ii + (p− 1)(Y TY )ii = p · (Y TY )ii = p
D∑

k=1

ykiyki =
1

p

D∑
k=1

x2
kiz

2
ki.

It follows that

E[Γii] =
1

p

D∑
k=1

x2
kiE[z2

ki] = (XTX)ii,

where we use the fact that E[z2
ki] = 0 · (1− p) + 1 · p = p.

The desired result follows from the above two cases.
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7. Let A be a real n× n positive definite matrix. Prove that det(A) ≤ (trace(A)/n)n.

Hint: Use the arithmetic-geometric mean inequality.

Solution: Let λ1, λ2, . . . , λn be the n positive eigenvalues of A. By the arithmetic-
geometric mean inequality, (

∏n
i=1 λi)

1/n ≤
∑n

i=1 λi/n. The result then follows by
noting that det(A) =

∏n
i=1 λi and trace(A) =

∑n
i=1 λi.

8. Define f : R2 → R by setting f(0, 0) := 0 and

f(x, y) :=
xy(x2 − y2)

x2 + y2
if (x, y) 6= (0, 0).

Prove that ∂1∂2f(0, 0) and ∂2∂1f(0, 0) exist, and that they are not equal, where ∂1 is
the partial derivative with respect to the first variable (x) and ∂2 with respect to the
second one (y).

Solution:

Since f is a ratio of non-vanishing polynomials for (x, y) 6= (0, 0), it is infinitely
differentiable everywhere except possible at (0, 0). We first prove the existence of
first derivatives at (0, 0):

∂1f(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x− 0
= lim

x→0

0− 0

x− 0
= 0

and similarly ∂2f(0, 0) exists and is equal to 0. Similarly,

∂1f(0, y) = lim
x→0

f(x, y)− f(0, y)

x− 0
=
−y3

y2
= −y.

Therefore ∂2∂1f(0, 0) exists and equals −1. Since f(x, y) ≡ −f(y, x), we have

∂2f(x, 0) = −∂1f(0, x) = x for x 6= 0 so that

∂1∂2f(0, 0) = 1.
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9. (All matrices in this problem are assumed to be real.) Consider symmetric n × n
matrices A and B, and assume that B − A is positive definite. Find necessary and
sufficient conditions on n × n matrices C such that CBCT − CACT is also positive
definite.

Solution: It is necessary and sufficient that C is an invertible matrix. Indeed, since
B−A is symmetric positive definite, there exists an n×n invertible matrix E such that
B − A = EET . Thus CBCT − CACT = C(B − A)CT = CEETCT = (CE)(CE)T .
This is always positive semidefinite, and positive definite if and only if CE, hence C,
is invertible.

10. Let f : R+ → R be a function that satisfies the following conditions:

(a) f is continuous,

(b) f satisfies f(xy) = f(x) + f(y) for all x, y > 0,

(c) f(1) = 0, and

(d) f(e) = 1.

Prove that f(x) = ln x.

Hint: Begin by considering x values that are integer powers of e, i.e., x = ea for
a ∈ Z and then rational powers of e, i.e., x = ea/b for a, b ∈ Z, b 6= 0.

Solution: For a positive integer a, we can apply (b) repeatedly to deduce

f(ea) = f(e · e · e · · · e) = f(e) + f(e) + · · ·+ f(e) = 1 + 1 + · · ·+ 1 = a.

From this, we have

0 = f(1) = f(ea · e−a) = f(ea) + f(e−a) = a+ f(e−a)

and so f(e−a) = −a.

Therefore, for any integer a (positive, negative, or zero) we have f(ea) = a.

Now let b be a positive integer and a be any integer. We have

a = f(ea) = f

(
ea/b · ea/b · · · ea/b︸ ︷︷ ︸

b times

)
= f

(
ea/b
)

+ f
(
ea/b
)

+ · · ·+ f
(
ea/b
)

= bf
(
ea/b
)
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which implies f
(
ea/b
)

= a/b.

Thus, for any r ∈ Q, f(er) = r.

Finally, let x be any positive real number and choose a sequence of rational numbers
r1, r2, r3, . . . that converges to ln x. By the continuity of f we have

f(x) = f
(
elnx

)
= lim

n→∞
f (ern) = lim

n→∞
rn = lnx.

11. Let α = 1 +
√

2. Because α > 1, we know that αn diverges as n → ∞. However, if
we look at the values produced, it is interesting to note that αn gets closer and closer
to being an integer. For example,(

1 +
√

2
)20

= 45239073.999999977895215 . . .

Explain why this is so, that is, prove that there exists a sequence zn of integers such
that

lim
n→∞

[αn − zn] = 0.

Hint: Find β such that αn + βn is an integer for all n.

Solution: Let β = 1 −
√

2 ≈ −0.414, so βn → 0 as n → ∞. Thus the difference
between αn and αn + βn goes to zero. By the Binomial Theorem (twice), we have

zn := αn + βn =
n∑

k=0

(
n

k

)(√
2
k

+ (−1)k
√

2
k
)
. (∗)

In (∗), when k is odd, the summands are zero. When k is even, the summands are
integers. Therefore zn, which grows arbitrarily close to αn, is an integer for all n.

12. Let . . . , Z−2, Z−1, Z0, Z1, Z2, . . . be a (doubly) infinite sequence of independent iden-
tically distributed standard normal random variables. For each integer n, let Yn =
ZnZn−1. Show that the sequence (Yn) is uncorrelated and not pairwise independent.
That is, show for all integers i 6= j, E(YiYj) = E(Yi)E(Yj), but that there is some
integer i 6= j such that Yi and Yj are not independent.

Solution: In the solution below we will use the facts that for standard normal random
variables Z we have E(Z) = 0, E(Z2) = 1, and E(Z4) = 3.
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First of all, since E(Yn) = E(ZnZn−1) = E(Zn)E(Zn−1) = 0 for all n, to show (Yn)
is uncorrelated it is enough to show for integers i 6= j that E(YiYj) = 0. To this end
we can assume without loss of generality that i > j. Therefore,

E(YiYj) = E(ZiZi−1ZjZj−1)

= E(Zi)E(Zi−1ZjZj−1) = 0,

and (Yn) is uncorrelated.

To see that (Yn) is not a pairwise independent sequence, we will show that E(Y 2
2 Y

2
1 ) 6=

E(Y 2
2 )E(Y 2

1 ). To this end note that for any integer i, E(Y 2
i ) = E(Z2

i Z
2
i−1) =

E(Z2
i )E(Z2

i−1) = 1. Moreover,

E(Y 2
2 Y

2
1 ) = E(Z2

2Z
4
1Z

2
0)

= E(Z2
2)E(Z4

1)E(Z2
0) = 3.

Therefore, since E(Y 2
2 )E(Y 2

1 ) = 1 6= 3 = E(Y 2
2 Y

2
1 ), the sequence (Yn) cannot be a

pairwise independent sequence.

13. Let F and G be two subspaces of Rn such that dim(F ) + dim(G) = n. Prove that
there exists a linear map A : Rn → Rn such that Null(A) = F and Range(A) = G.

Solution: Let m = dim(F ) and k = dim(G). Let (e1, . . . , em, em+1, . . . , em+k) be a
basis of Rn such that (e1, . . . , em) is a basis for F . Similarly, let (f1, . . . , fk) be a basis
of G. Define A by Aei = 0 for i ∈ {1, . . . ,m} and Aem+j = fj for j ∈ {1, . . . , k}. In
other terms, A is the linear transformation with matrix

[0, . . . , 0︸ ︷︷ ︸
m times

, f1, . . . , fk] [e1, . . . , en]−1

relative to the basis (e1, . . . , en).

Then Null(A) ⊃ F and Range(A) ⊃ G. But if one of these inclusions were strict, we
would have

n = dim(Range(A)) + dim(Null(A)) > k +m = n,

which is a contradiction.
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14. Let S be an n-by-n (real) matrix with rank m. Prove that there exist two real
matrices A and B such that A is n-by-m, B is m-by-n, and S = AB.

Solution: Note that one must have m ≤ n. Let e1, . . . , em ∈ Rn be a basis of
Range(S). Take A = [e1, . . . , em]. Since A has rank m, ATA is invertible, and if B is
such that S = AB, we must have ATS = ATAB, leaving

B = (ATA)−1ATS

as the only possible choice. Taking this B, one then has AB = S. Indeed, if x ∈ Rn,
then Sx ∈ Range(S) is a linear combination of the columns of A, i.e., there exists
λ ∈ Rm such that Sx = Aλ. One then has

ABx = A(ATA)−1ATSx = A(ATA)−1ATAλ = Aλ = Sx.

15. A football team consists of 20 offensive and 20 defensive players. The players are to
be grouped in groups of 2 for the purpose of determining roommates. If the pairing
is done (uniformly) at random, what is the probability that there are no offensive–
defensive roommate pairs? Express your answer as a ratio of products of factorials.

Solution: #1: This is an Example in Chapter 2 of Ross. There are(
40

2, 2, . . . , 2

)
=

40!

(2!)20

ways of dividing the 40 players into 20 ordered pairs of two each. Hence there are
40!/[(2!)2020!] ways of dividing the players into (unordered) pairs of 2 each. Further-
more, since a division will result in no offensive–defensive pairs if and only if the
offensive (and defensive) players are paired among themselves, it follows that there
are {20!/[(2!)1010!]}2 such divisions. Hence the probability of no offensive–defensive
roommate pairs is given by

{20!/[(2!)1010!]}2

40!/[(2!)2020!]
=

(20!)3

(10!)240!

[
=

323

240990435
≈ 1.34× 10−6

]
.

#2: Label the offensive players as O1, . . . , O20. Consider a sequence of steps at
which the lowest-numbered not-yet-paired offensive player is chosen and paired with a
randomly chosen not-yet-paired player. For i = 1, . . . , 10, the conditional probability
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that, at the ith such step, the offensive player chosen is paired with an offensive player
given that the same is true at steps 1, 2, . . . , i−1 is clearly [20−(2i−1)]/[40−(2i−1)] =
(21− 2i)/(41− 2i). Thus the probability that there are no offensive–defensive pairs
is

10∏
i=1

21− 2i

41− 2i
=

[20!/(21010!)]2

40!/(22020!)
=

(20!)3

(10!)240!
.
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