
Department of Applied Mathematics and Statistics
The Johns Hopkins University

Introductory Examination–Summer Session

Friday, August 22, 2014

Instructions: Read carefully!

1. This closed-book examination consists of 15 problems, each worth 5 points. The
passing grade has been set at 50 points, i.e., 2/3 of the total points. Partial credit
will be given as appropriate; each part of a problem will be given the same weight.
If you are unable to prove a result asserted in one part of a problem, you may still
use that result to help in answering a later part.

2. You have been provided with a syllabus indicating the scope of the exam. Our purpose
is to test not only your knowledge, but also your ability to apply that knowledge, and
to provide mathematical arguments presented in clear, logically justified steps.
The grading will reflect that broader purpose.

3. The problems have not been grouped by topic, but there are roughly equally many
mainly motivated by each of the three areas identified in the syllabus (linear algebra;
real analysis; probability). Nor have the problems been arranged systematically by
difficulty. If a problem directs you to use a particular method of analysis, you must
use it in order to receive substantial credit.

4. Start your answer to each problem on a NEW sheet of paper. Write only on ONE SIDE
of each sheet, and please do not write very near the margins on any sheet. Arrange
the sheets in order, and write your NAME and the PROBLEM NUMBER on each
sheet.

5. The examination will begin at 8:30 AM; lunch and refreshments will be provided.
The exam will end just before 5:00 PM. You may leave before then, but in that case
you may not return.

6. Paper will be provided, but you should bring and use writing instruments that yield
marks dark enough to be read easily.

7. No calculators of any sort are needed or permitted.



1. Given that
∞∑
n=1

1

n2
=
π2

6
, find the sum

1 +
1

32
+

1

52
+

1

72
+

1

92
+ · · ·

Solution: Since
∞∑
n=1

1

n2
=

∞∑
n=1

1

(2n− 1)2
+
∞∑
n=1

1

(2n)2
=

∞∑
n=1

1

(2n− 1)2
+

1

4

∞∑
n=1

1

n2
=

∞∑
n=1

1

(2n− 1)2
+
π2

24
=
π2

6
, it follows that

∞∑
n=1

1

(2n− 1)2
=
π2

8
.

2. Suppose F is a closed proper subset of Rn and x0 ∈ Rn such that x0 6∈ F . Prove that
there must exist two disjoint open sets O1 and O2 such that x0 ∈ O1 and F ⊂ O2.

Solution: Since x0 ∈ F c and F c is open, there is a d > 0 such that Bd(x0) := {x :
|x − x0| < d} is contained in F c. This shows |y − x0| ≥ d for every y ∈ F . Now,
define O1 = {x : |x − x0| < d/2}, and O2 = {x : |x − x0| > d/2}. O1 and O2 are
clearly open, and they are disjoint since a point x ∈ Rn cannot simultaneously be less
than and greater than d/2 from x0. Notice that x0 ∈ O1 since |x0 − x0| = 0 < d/2.
Moreover, if y ∈ F then |y − x0| ≥ d > d/2, which shows F ⊂ O2.

3. Suppose that f : R→ R is an n-th degree polynomial which has n distinct real roots,
where n ≥ 2. Show that its derivative f ′ has n− 1 distinct real roots.

Solution: Denote the roots of f by r1 < r2 < r3 < · · · < rn.

For each i = 2, 3, 4, . . . , n, either f(x) > 0 for all x ∈ (r[i−1], ri) or f(x) < 0 for
all x ∈ (r[i−1], ri). (Otherwise, by continuity of f there would be a root of f in the
interior of each such interval.)

Since f is continuous, it attains a maximum or minimum, respectively, at least once
in the interior of the interval.
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Since f is differentiable everywhere, at each such maximum or minimum point x,
f ′(x) = 0. Thus, there is at least one real root of f ′ in each of the n− 1 intervals.

However, f ′ is an (n− 1)-degree polynomial, so has exactly n− 1 roots. Thus, there
is only one root of f ′ in each of the n− 1 intervals. So, all roots of the derivative are
real and distinct.

4. (a) Prove that, for all t ≥ 0, the value of the integral

f(t) =

∫ ∞
0

1− exp(−tx2)
x2

dx

is a finite real number and that f(t) = f(1)
√
t with f(1) > 0.

(b) Justifying each step of your calculation, compute f ′(t) explicitly and deduce
from it the expression of f(t) for all t.

Solution:

(a) We need only show that the integrand is suitably well behaved near the origin
and near ∞. Indeed, the integrand approaches t as x ↓ 0 and is asymptotically
equivalent to x−2 (which is integrable at ∞) as x → ∞. If t = 0, the integral
is zero, and for any t > 0, the integrand is positive and so is the integral. For
t > 0, making the change of variable y =

√
tx yields

f(t) =
√
t

∫ ∞
0

1− exp(−y2)
y2

dy = f(1)
√
t

and this is also valid for t = 0.

(b) One can justify differentiation (with respect to t) under the integral by stan-
dard theorems in the theory of improper Riemann integrals; a somewhat more
sophisticated approach applies the dominated convergence theorem to difference
quotients. In any case, we find, for t > 0,

f ′(t) =

∫ ∞
0

e−tx
2

dx = 1
2

√
π t−1/2.

Therefore
f(t) =

√
πt+ c

for some constant c. Comparing to the previous result, we have c = 0 and
f(t) =

√
πt.
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5. Suppose that f : [0,∞)→ R satisfies

f(1) = 1 and f ′(x) =
1

x2 + f(x)2
for x ≥ 1.

Prove that limx→∞ f(x) exists and satisfies limx→∞ f(x) ≤ 1 + π/4.

Solution: It is easy to see that f ′(x) > 0 for all x ∈ [1,∞). This may be combined
with f(1) = 1 to conclude that f is strictly monotonically increasing on [1,∞) and,
in particular, that

f(x) ≥ f(1) = 1 for all x ≥ 1. (1)

From the Fundamental Theorem of Calculus, (5), and (1) we have

f(x) = f(1) +

∫ x

1

f ′(t)dt = 1 +

∫ x

1

f ′(t)dt = 1 +

∫ x

1

1

t2 + f(t)2

≤ 1 +

∫ x

1

1

t2 + 1

= 1 +
[

tan−1(t)
]x
1

= 1 + tan−1(x)− tan−1(1) = 1− π

4
+ tan−1(x).

It then easily follows that

lim sup
x≥1

f(x) ≤ lim sup
x≥1

(
1− π

4
+ tan−1(x)

)
= lim

x→∞

(
1− π

4
+ tan−1(x)

)
= 1− π

4
+
π

2
= 1 +

π

4
.

Thus, since f(x) is monotonically increasing, we know that limk→∞ f(x) exists and
is bounded by 1 + π

4
.

6. Find a 2× 2 matrix A with real entries such that A3 = I and A 6= I.

Solution: Rotation by 2π/3 works:[
cos(2π/3) sin(2π/3)
− sin(2π/3) cos(2π/3)

]
=

[
−1/2

√
3/2

−
√

3/2 −1/2

]
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7. Let x, y ∈ Rn, and let A be an n× n real matrix. Assume that A is orthogonal, and
show that |x− y| = |Ax− Ay|.

Solution: Since A orthogonal implies ATA = I, we have |x−y|2 = (x−y)T (x−y) =
(x− y)T (ATA)(x− y) = (A(x− y))T (A(x− y)) = |Ax− Ay|2.

8. Let F , G and H be three vector subspaces of a vector space E. Assume that the
union is also a vector subspace. Prove that one of F,G or H contains the other two.
Provide an “algebraic” proof of the result, avoiding any topological argument (no
limit, density, closed or open sets etc.).

Hint: It may be helpful to prove the result for two subspaces first.

Solution: The case of two subspaces is straightforward. If F ∪ G is a vector space,
and there exists f in F but not in G, then for any g ∈ G, one has f + g ∈ F ∪ G,
but not in G (because f ∈ G otherwise), which implies that f + g ∈ F and therefore
g ∈ F . Consequently G ⊂ F .

Consider three subspaces. If any of them is included in the union of the other two,
we are done by the previous argument. Assume then that H 6⊂ G ∪ F . Take h ∈
H, h 6∈ G ∪ F . If g ∈ G, then h + g, h − g ∈ F ∪ G ∪ H. If either h + g or h − g
belongs to G, then h belongs to G too, which is a contradiction. If the two belong
to F , then so does their sum, which implies that h ∈ F , another contradiction. So,
one of them must belong to H, which implies that g ∈ H. Since this is true for all
g ∈ G, we get G ⊂ H, and the same argument proves that F ⊂ H.

9. Define ‖A‖2 =
√∑n

k,l=1 a
2
kl. Let A be a n× n real matrix with ‖A‖2 < 1, show that

(I + A)−1 exists and

‖(I + A)−1‖2 ≤
√
n

1− ‖A‖2
.

Solution: One has

|Ax| =

√√√√ n∑
k=1

( n∑
l=1

aklxl

)2
≤

√√√√ n∑
k=1

( n∑
l=1

a2kl|x|2
)
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by Schwartz inequality. This yields |Ax| ≤ ‖A‖2|x|. More generally, the same argu-
ment proves that ‖AB‖2 ≤ ‖A‖2‖B‖2.
This implies, in particular, that every eigenvalue λ of A satisfies |λ| < 1. Therefore,
for any eigenvalue of I +A, which is of the form 1 + λ, we have |1 + λ| ≥ 1− |λ| > 0.
Therefore, no eigenvalue of I + A can be zero and hence I + A is nonsingular.

For the second part, from (I + A)(I + A)−1 = I, we have that

(I + A)−1 = I − A(I + A)−1.

Taking norm of both sides, we get

‖(I + A)−1‖2 ≤ ‖I‖2 + ‖A‖2‖(I + A)−1‖2

and hence,
(1− ‖A‖2)||(I + A)−1‖2 ≤ ‖I‖2 =

√
n.

10. Let A be a symmetric n× n matrix. Show that there exists a natural number k ≥ 1
such that Ak = 0 if and only if A = 0.

Solution: Since A is symmetric, we can decompose A = SDS−1 where S is the
matrix of eigenvectors and D is a diagonal matrix of the eigenvalues. Ak = 0 if and
only if SDkS−1 = 0 if and only if Dk = 0 if and only if D = 0 if and only if A = 0.

11. If n men, among whom are A and B, stand in a row arranged at random, what is
the probability that there will be exactly r men between A and B, r = 0, 1, ..., n− 2?
Same question if they stand in a ring instead of in a row. (In the circular arrangement
consider only the arc leading from A to B in the anticlockwise direction.)

Solution: Let R be the number of men between A and B. For the linear case, there
are n(n− 1) ways to place A and B. Of these, assuming A is to the left of B, there
are n − r − 1 ways to place A so that R = r, and the same for B to the left of A.
Hence, P (R = r) = 2(n−r−1)

n(n−1) . In the case of a circle, all spacings are equally likely, so

P (R = r) = 1
n−1 , r = 0, 1, ..., n− 2.
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12. Let X denote the number of different days of a 365-day year that are birthdays of
four persons selected randomly. Calculate E[X].

Solution: With the simplifying assumption that there are 365 days in a year, denoted
1 through 365, let Ik denote the indicator of the event that day k, k = 1, 2, 3, . . . , 365,
is the birthday of at least one of the persons. Then

X = I1 + I2 + · · ·+ I365

and by linearity of expectation

E[X] = E[I1 + I2 + · · ·+ I365] = E[I1] + E[I2] + · · ·+ E[I365].

With the modeling assumptions that the persons’ birthdays are independent and
equally likely to be on each day of the year,

E[X]

= 365E[I1]

= 365P [day 1 is the birthday of at least one of the four people]

which, by using complementation,

= 365 [1− P [day 1 is not the birthday of any of the four people]]

= 365

[
1−

(
364

365

)4
]

which, if calculated, is 3.98359....

13. Let X1, X2, . . . , Xn be independent random values drawn uniformly from [0, 1]. Let

A = min{X1, X2, . . . , Xn} and B = max{X1, X2, . . . , Xn}.
What is the probability that A+B > 1?

Solution: Let α = Pr{A + B > 1} and β = Pr{A + B < 1}. Note that α + β = 1
because Pr{A+B = 1} = 0.

Let A′ = min{1−X1, . . . , 1−Xn} and B′ = max{1−X1, . . . , 1−Xn}. Since 1−Xi

is also uniform on [0, 1] we have Pr{A′ +B′ > 1} = α and Pr{A′ +B′ < 1} = β.

Observe that A′ = 1−B and B′ = 1− A. Therefore

α = Pr{A′ +B′ > 1} = Pr{(1− A) + (1−B) > 1} = Pr{A+B < 1} = β

hence α = β = 1
2
.
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14. Let X, Y and Z be random variables having mean 0 and unit variance. Show that

|ρXZ − ρXY ρY Z | ≤
√

1− ρ2XY
√

1− ρ2Y Z ,

where ρXZ is the correlation of the random variables X and Z, similarly for ρXY , ρY Z .
Hint: Write XZ = [ρXY Y + (X − ρXY Y )][ρY ZY + (Z − ρY ZY )].

Solution: Note that X − ρXY Y is uncorrelated with Y and has mean zero and
variance 1− ρ2XY . Indeed,

E[(X − ρXY Y )Y ] = E(XY )− ρXYE(Y 2) = ρXY − ρXY · 1 = 0.

Mean zero is obvious as a linear combination of mean zero variables, while

E[(X−ρXY Y )2] = E(X2)− 2ρXYE(XY ) +ρ2XYE(Y 2) = 1− 2ρ2XY +ρ2XY = 1−ρ2XY .

Likewise, Z − ρY ZY is uncorrelated with Y and has mean zero and variance 1− ρ2Y Z .
Using the hint, we obtain from the vanishing correlations above that

ρXZ = E(XZ) = ρXY ρY ZE(Y 2) + E[(X − ρXY Y )(Z − ρY ZY )]

and, from E(Y 2) = 1,

ρXZ − ρXY ρY Z = E[(X − ρXY Y )(Z − ρY ZY )]

The Cauchy-Schartz inequality implies

|E[(X − ρXY Y )(Z − ρY ZY )]| ≤
√
E[(X − ρXY Y )2]E[(Z − ρZY Y )2]

=
√

1− ρ2XY
√

1− ρ2ZY

15. We toss a fair coin until two consecutive heads or tails appear for the first time.
Determine the probability that an even number of tosses will be required.

Solution: Let T be the number of tosses until either two consecutive heads or two
consecutive tails appear for the first time. Therefore, the events

(T = 2) = {HH,TT}
(T = 3) = {HTT, THH}
(T = 4) = {HTHH, THTT}
(T = 5) = {HTHTT, THTHH}, . . . etc.
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imply that for any integer k ≥ 2, P (T = k) = 2
2k

, and the probability that T is even
is

∞∑
n=1

P (T = 2n) =
∞∑
n=1

2

22n
= 2

∞∑
n=1

1

4n
=

1
2

1− 1
4

=
2

3
.
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