Applied mathematics department seminar

September 9th, 2021

SPEAKER: Jim Fill

TITLE: Breaking Multivariate Records

ABSTRACT: For general dimension d, we identify, with proof, the asymptotic conditional distribution of the number of (Pareto) records broken by an observation given that the observation sets a record.

Fix d, and let $\mathcal{K}(d)$ be a random variable with this distribution. We show that the (right) tail of $\mathcal{K}(d)$ satisfies

$$\mathbb{P}(\mathcal{K}(d) \ge k) \le \exp\left[-\Omega\left(k^{(d-1)/(d^2-2)}\right)\right] \text{ as } k \to \infty$$

and

$$\mathbb{P}(\mathcal{K}(d) \ge k) \ge \exp\left[-O\left(k^{1/(d-1)}\right)\right]$$
 as $k \to \infty$.

When d = 2, the description of $\mathcal{K}(2)$ in terms of a Poisson process agrees with the main result from Fill [*Comb. Probab. Comput.* 30 (2021) 105–123] that the distribution of $\mathcal{K}(2)$ is Geometric(1/2) with support $\{0, 1, \ldots\}$.

We show that $\mathbb{P}(\mathcal{K}(d) \ge 1) = \exp[-\Theta(d)]$ as $d \to \infty$; in particular, $\mathcal{K}(d) \to 0$ in probability as $d \to \infty$.