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Notes for Signals and Systems 
 

0.1  Introductory Comments 
 
What is “Signals and Systems?” Easy, but perhaps unhelpful answers, include 

• the α  and the ω , 
• the question and the answer,  
• the fever and the cure, 
• calculus and complex arithmetic for fun and profit, 

 
More seriously, signals are functions of time (continuous-time signals) or sequences in time 
(discrete-time signals) that presumably represent quantities of interest. Systems are operators that 
accept a given signal (the input signal) and produce a new signal (the output signal). Of course, 
this is an abstraction of the processing of a signal. 
 
From a more general viewpoint, systems are simply functions that have domain and range that are 
sets of functions of time (or sequences in time). It is traditional to use a fancier term such as 
operator or mapping in place of function, to describe such a situation. However we will not be so 
formal with our viewpoints or terminologies.  Simply remember that signals are abstractions of 
time-varying quantities of interest, and systems are abstractions of processes that modify these 
quantities to produce new time-varying quantities of interest. 
 
These notes are about the mathematical representation of signals and systems. The most 
important representations we introduce involve the frequency domain – a different way of looking 
at signals and systems, and a complement to the time-domain viewpoint. Indeed engineers and 
scientists often think of signals in terms of frequency content, and systems in terms of their effect 
on the frequency content of the input signal. Some of the associated mathematical concepts and 
manipulations involved are challenging, but the mathematics leads to a new way of looking at the 
world! 
 
0.2  Background in Complex Arithmetic 
 
We assume easy familiarity with the arithmetic of complex numbers. In particular, the polar form 
of a complex number c , written as 

 | | j cc c e ∠=  
is most convenient for multiplication and division, e.g., 

 1 2 1 2( )
1 2 1 2 1 2| | | | | || |j c j c j c cc c c e c e c c e∠ ∠ ∠ +∠= =  

The rectangular form for c , written 
 c a jb= +  
where a  and b  are real numbers, is most convenient for addition and subtraction, e.g., 
 1 2 1 1 2 2 1 2 1 2( ) ( )c c a jb a jb a a j b b+ = + + + = + + +  
 
Of course, connections between the two forms of a complex number c  include 

 2 2 1| | | | , ( ) tan ( / )c a jb a b c a jb b a−= + = + ∠ = ∠ + =  
and, the other way round, 
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 Re{ } | |cos( ) , Im{ } | |sin( )a c c c b c c c= = ∠ = = ∠  
Note especially that the quadrant ambiguity of the inverse tangent must be resolved in making 
these computations. For example, 

 1(1 ) tan ( 1/1) / 4j π−∠ − = − = −  
while 

 1( 1 ) tan (1/( 1)) 3 / 4j π−∠ − + = − =  
It is important to be able to mentally compute the sine, cosine, and tangent of angles that are 
integer multiples of / 4π , since many problems will be set up this way to avoid the distraction of 
calculators. 
 
You should also be familiar with Euler’s formula, 

 cos( ) sin( )je jθ θ θ= +  
and the complex exponential representation for trigonometric functions: 

 cos( ) , sin( )
2 2

j j j je e e e
j

θ θ θ θ
θ θ

− −+ −
= =  

 
Notions of complex numbers extend to notions of complex-valued functions (of a real variable) in 
the obvious way. For example, we can think of a complex-valued function of time, ( )x t , in the 
rectangular form 
 { } { }( ) Re ( ) Im ( )x t x t j x t= +  
In a simpler notation this can be written as 
 ( ) ( ) ( )R Ix t x t j x t= +  
where ( )Rx t  and ( )Ix t  are real-valued functions of t . 
Or we can consider polar form, 

 ( )( ) | ( ) | j x tx t x t e ∠=  
where | ( ) |x t  and ( )x t∠  are real-valued functions of t  (with, of course, | ( ) |x t  nonnegative for 
all t  ). In terms of these forms, multiplication and addition of complex functions can be carried 
out in the obvious way, with polar form most convenient for multiplication and rectangular form 
most convenient for addition. 
 
In all cases, signals we encounter are functions of the real variable t . That is, while signals that 
are complex-valued functions of  t , or some other real variable, will arise as mathematical 
conveniences, we will not deal with functions of a complex variable until near the end of the 
course. 
 
0.3  Analysis Background 
 
We will use the notation [ ]x n  for a real or complex-valued sequence (discrete-time signal) 
defined for integer values of n. This notation is intended to emphasize the similarity of our 
treatment of functions of a continuous variable (time) and our treatment of sequences (in time). 
But use of the square brackets is intended to remind us that the similarity should not be overdone! 
 
Summation notation, for example, 
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3

1
[ ] [1] [2] [3]

k
x k x x x

=
= + +∑  

 
is extensively used. Of course, addition is commutative, and so we conclude that 

 
3 1

1 3
[ ] [ ]

k k
x k x k

= =
=∑ ∑  

Care must be exercised in consulting other references since some use the convention that a 
summation is zero if the upper limit is less than the lower limit. And of course this summation 
limit reversal is not to be confused with the integral limit reversal formula: 

 
3 1

1 3
( ) ( )x t dt x t dt= −∫ ∫  

It is important to manage summation indices to avoid collisions. For example, 

 
3

1
[ ] [ ]

k
z k x k

=
∑  

is not the same thing as 

 
3

1
[ ] [ ]

k
z k x k

=
∑  

But it is the same thing as 

 
3

1
[ ] [ ]

j
z k x j

=
∑  

All these observations are involved in changes of variables of summation. A typical case is 

 
3

1
[ ]

k
x n k

=
−∑  

Let j n k= −  (relying on context to distinguish the new index from the imaginary unit j ) to 
rewrite the sum as 

 
3 1

1 3
[ ] [ ]

n n

j n j n
x j x j

− −

= − = −
=∑ ∑  

Sometimes we will encounter multiple summations, often as a result of a product of summations, 
for example, 

 
4 5 4 5 5 4

1 0 1 0 0 1
[ ] [ ] [ ] [ ] [ ] [ ]

k j k j j k
x k z j x k z j x k z j

= = = = = =

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑ ∑  

 
The order of summations here is immaterial. But, again, look ahead to be sure to avoid index 
collisions by changing index names when needed. For example, write 

 
4 5 4 5

1 0 1 0
[ ] [ ] [ ] [ ]

k k k j
x k z k x k z j

= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑  

before proceeding as above. 
 
These considerations also arise, in slightly different form, when integral expressions are 
manipulated. For example, changing the variable of integration in the expression 
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0

( )
t

x t dτ τ−∫  

to tσ τ= −  gives 

 
0

0
( ) ( ) ( )

t

t
x d x dσ σ σ σ− =∫ ∫  

We encounter multiple integrals on rare occasions, usually as a result of a product of integrals, 
and collisions of integration variables must be avoided by renaming. For example, 

 

3 3 3 3

0 1 0 1
3 3

0 1

( ) ( ) ( ) ( )

( ) ( )

x t dt z t dt x t dt z d

x t z dt d

τ τ

τ τ

− −

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

∫ ∫ ∫ ∫

∫ ∫

 

 
The Fundamental Theorem of Calculus arises frequently: 

 ( ) ( )
td x d x t

dt
τ τ

−∞
=∫  

 
For finite sums, or integrals of well-behaved (e.g. continuous) functions with finite integration  
limits, there are no particular technical concerns about existence of the sum or integral, or 
interchange of order of integration or summation. However, for infinite sums or improper 
integrals (over an infinite range) we should be concerned about convergence and then about 
various manipulations involving change of order of operations. However, we will be a bit cavalier 
about this. For summations such as  

 [ ]
k

x k
∞

=−∞
∑  

a rather obvious necessary condition for convergence is that | [ ] | 0x k →  as k →±∞ .  Typically 
we will not worry about general sufficient conditions, rather we leave consideration of 
convergence to particular cases.  
 
For integrals such as 

 ( )x t dt
∞

−∞
∫  

an obvious necessary condition for convergence is that | ( ) | 0x t →  as t →±∞ , but again 
further details will be ignored. We especially will ignore conditions under which the order of a 
double (infinite) summation can be interchanged, or the order of a double (improper) integral can 
be interchanged. Indeed, many of the mathematical magic tricks that appear in our subject are 
explainable only by taking a very rigorous view of these issues. Such rigor is beyond our scope. 
 
For complex-valued functions of time, operations such as differentiation and integration are 
carried out in the usual fashion with j  viewed as a constant. It sometimes helps to think of the 
function in rectangular form to justify this view: for example, if ( ) ( ) ( )R Ix t x t j x t= + , then  
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 ( ) ( ) ( )
t t t

R Ix d x d j x dτ τ τ τ τ τ
−∞ −∞ −∞

= +∫ ∫ ∫  

Similar comments apply to complex summations and sequences. 
 
Pathologies that sometimes arise in the calculus, such as everywhere continuous but nowhere 
differentiable functions (signals), are of no interest to us! On the other hand, certain generalized 
notions of functions, particularly the impulse function, will be very useful for representing special 
types of signals and systems. Because we do not provide a careful mathematical background for 
generalized functions, we will take a very formulaic approach to working with them. Impulse 
functions aside, fussy matters such as signals that have inconvenient values at isolated points will 
be handled informally by simply adjusting values to achieve convenience. 
 
Example  Consider the function 

 
1, 0

( )
0,

t
x t

else
=⎧

= ⎨
⎩

 

Certainly the integral of ( )x t  between any two limits, is zero – there being no area under a single 
point. The derivative of ( )x t  is zero for any 0t ≠ , but the derivative is undefined at t = 0, there 
being no reasonable notion of “slope.” How do we deal with this? The answer is to view ( )x t as 
equivalent to the identically-zero function. Indeed, we will happily adjust the value of a function 
at isolated values of t for purposes of convenience and simplicity. 
 
In a similar fashion, consider 

 
1, 0

( )
0, 0

t
u t

t
>⎧

= ⎨ <⎩
 

which probably is familiar as the unit-step function. What value should we assign to (0)u ? 
Again, the answer is that we choose (0)u for convenience. For some purposes, setting 

(0) 1/ 2u =  is most suitable, for other purposes (0) 1u =   is best. But in every instance we freely 
choose the value of (0)u to fit the purpose at hand. The derivative of ( )u t  is zero for all  0t ≠ , 
but is undefined in the usual calculus sense at 0t = . However there is an intuitive notion that a 
jump upward has infinite slope (and a jump downward has slope−∞ ). We will capture this 
notion using generalized functions and a notion of generalized calculus in the sequel. By 
comparison, the signal ( )x t  in the example above effectively exhibits two simultaneous jumps, 
and there is little alternative than to simplify ( )x t  to the zero signal. 
 
Except for generalized functions, to be discussed in the sequel, we typically work in the context 
of piecewise-continuous functions, and permit only simple, finite jumps as discontinuities. 
 
Exercises 
 

1.  Compute the polar form of the complex numbers (1 )j je +  and  / 2(1 ) jj e π−+ . 
 

2.  Compute the rectangular form of the complex numbers 5 / 42 je π  and   6j je eπ π− + . 
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3.  Evaluate, the easy way, the magnitude  ( )32 2| |j−  and the angle  2( 1 )j∠ − − . 
 

4.  Using Euler's relation,  cos sinje jθ θ θ= + , derive the expression 
 

1 1
2 2cos j je eθ θθ −= +  

 
5.  If 1z  and 2z  are complex numbers, and a star denotes complex conjugate, express the 
following quantities in terms of the real and imaginary parts of 1z  and 2z  : 
 

1 1Re[ ]z z∗− ,    1 2Im[ ]z z  ,    1 2Re[ / ]z z  
 
6.  What is the relationship among the three expressions below? 

 ( ) , ( ) , 2 (2 )x d x d x dσ σ σ σ σ σ
∞ ∞ ∞

−∞ −∞ −∞
−∫ ∫ ∫  

7.  Simplify the three expressions below. 

 
0 0

0
( ) , ( ) , ( )

t
d d d
dt dt d

t t
x d x d x dσσ σ σ σ σ σ

−
∫ ∫ ∫  
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Notes for Signals and Systems 

 
1.1 Mathematical Definitions of Signals  
 
A continuous-time signal is a quantity of interest that depends on an independent variable, where 
we usually think of the independent variable as time. Two examples are the voltage at a particular 
node in an electrical circuit and the room temperature at a particular spot, both as functions of 
time. A more precise, mathematical definition is the following. 
 
A continuous-time signal is a function ( )x t of the real variable t defined for −∞ < t < ∞ . A crude 
representation of such a signal is a sketch, as shown. 

 
On planet earth, physical quantities take on real numerical values, though it turns out that 
sometimes it is mathematically convenient to consider complex-valued functions of  t. However, 
the default is real-valued ( )x t , and indeed the type of sketch exhibited above is valid only for 
real-valued signals. A sketch of a complex-valued signal ( )x t  requires an additional dimension 
or multiple sketches, for example, a sketch of the real part, Re{ ( )}x t , versus t  and a sketch of 
the imaginary part, Im{ ( )}x t , versus t . 
 
Remarks: 
• A continuous-time signal is not necessarily a continuous function, in the sense of calculus. 

Discontinuities (jumps) in a signal are indicated by a vertical line, as drawn above. 
• The default domain of definition is always the whole real line – a convenient abstraction that 

ignores various big-bang theories. We use ellipses as shown above to indicate that the signal 
“continues in a similar fashion,” with the meaning presumably clear from context. If a signal 
is of interest only over a particular interval in the real line, then we usually define it to be zero 
outside of this interval so that the domain of definition remains the whole real line. Other 
conventions are possible, of course. In some cases a signal defined on a finite interval is 
extended to the whole real line by endlessly repeating the signal (in both directions). 

• The independent variable need not be time, it could be distance, for example. But for 
simplicity we will always consider it to be time. 

• An important subclass of signals is the class of unilateral or right-sided signals that are zero 
for negative arguments. These are used to represent situations where there is a definite 
starting time, usually designated 0t =  for convenience. 

 
A discrete-time signal is a sequence of values of interest, where the integer index can be thought 
of as a time index, and the values in the sequence represent some physical quantity of interest. 
Because many discrete-time signals arise as equally-spaced samples of a continuous-time signal, 
it is often more convenient to think of the index as the “sample number.” Examples are the 
closing Dow-Jones stock average each day and the room temperature at 6 pm each day. In these 
cases, the sample number would be day 0, day 1, day 2, and so on. 
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We use the following mathematical definition. 
 
A discrete-time signal is a sequence [ ]x n defined for all integers −∞ < n < ∞ . We display [ ]x n  
graphically as a string of lollypops of appropriate height. 
 

 
Of course there is no concept of continuity in this setting. However, all the remarks about 
domains of definition extend to the discrete-time case in the obvious way. In addition, complex-
valued discrete-time signals often are mathematically convenient, though the default assumption 
is that [ ]x n  is a real sequence. 
 
In due course we discuss converting a signal from one domain to the other – sampling and 
reconstruction, also called analog-to-digital (A/D) and digital-to-analog (D/A) conversion. 
 
1.2 Elementary Operations on Signals  
 
Several basic operations by which new signals are formed from given signals are familiar from 
the algebra and calculus of functions. 
 
• Amplitude Scale: y(t) = a x(t), where a is a real (or possibly complex) constant 
 
• Amplitude Shift: y(t) = x(t)+ b, where b is a real (or possibly complex) constant 
 
• Addition: y(t) = x(t) + z(t) 
 
• Multiplication: y(t) = x(t) z(t) 
 
With a change in viewpoint, these operations can be viewed as simple examples of systems, a 
topic discussed at length in the sequel. In particular, if a and b are assumed real, and z(t) is 
assumed to be a fixed, real signal, then each operation describes a system with input signal ( )x t  
and output signal ( )y t . This viewpoint often is not particularly useful for such simple situations, 
however. 
 
The description of these operations for the case of discrete-time signals is completely analogous. 
 
1.3 Elementary Operations on the Independent Variable  
 
Transformations of the independent variable are additional, basic operations by which new 
signals are formed from a given signal. Because these involve the independent variable, that is, 
the argument (t), the operations sometimes subtly involve our customary notation for functions. 
 
These operations can be viewed as somewhat less simple examples of systems, and sometimes 
such an alternate view is adopted. 
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As is typical in calculus, we use the notation x(t) to denote both the entire signal, and the value of 
the signal at a value of the independent variable called t. The interpretation depends on context. 
This is simpler than adopting a special notation, such as ( )x i , to describe the entire signal. 
Subtleties that arise from our dual view will be discussed in the particular context. 
 
• Time Scale: Suppose ( ) ( )y t x at=  where a is a real constant. By sketching simple examples, 

it becomes clear that if a > 1, the result is a time-compressed signal, and if 0 < a < 1, the 
result is time dilation. Of course, the case a = 0 is trivial, giving the constant signal 

( ) (0)y t x=  that is only slightly related to ( )x t . For a ≠ 0, ( )x t can be recovered from ( )y t . 
That is, the operation is invertible. If a < 0, then there is a time reversal, in addition to 
compression or dilation. The recommended approach to sketching time-scaled signals is 
simply to evaluate ( )y t for a selection of values of t until the result becomes clear. For 
example, 

 
 

 

 

 

 
Notice that in addition to compression or dilation, the `beginning time’ or `ending time’ of a 
pulse-type signal will be changed in the new time scale. 
 
• Time Shift: Suppose ( ) ( )y t x t T= −  where T is a real constant. If 0T > , the shift is a right 

shift in time, or a time delay. If T is negative, we have a left shift, or a time advance. For 
example, 
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• Combination Scale and Shift: Suppose ( ) ( )y t x at T= − . It is tempting to think about this as 

two operations in sequence -- a scale followed by a shift, or a shift followed by a scale. This 
is dangerous in that a wrong choice leads to incorrect answers. The recommended approach is 
to ignore shortcuts, and figure out the result by brute-force graphical methods: substitute 
various values of t until ( )y t  becomes clear. Continuing the example, 

 

 
Example: The most important scale and shift combination for the sequel is the case where 

1a = − , and the sign of T is changed to write ( ) ( )y t x T t= − . This is accomplished graphically 
by reversing time and then shifting the reversed signal T units to the right if 0T > , or to the left 
if 0T < . We refer to this transformation as the flip and shift. For example, 

 
 
The flip and shift operation can be explored in the applet below. However, you should verify the 
interpretation of the flip and shift by hand sketches of a few examples. 
 

flip and shift 
 
 
1.4 Energy and Power Classifications  
 
The total energy of a continuous-time signal ( )x t , where ( )x t  is defined for −∞ < t < ∞, is  

2 2( ) lim ( )
T

T T
E x t dt x t dt

∞

∞
→∞−∞ −

= =∫ ∫  

http://www.ece.jhu.edu/~rugh/flipper2/default.htm
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In many situations, this quantity is proportional to a physical notion of energy, for example, if 
( )x t  is the current through, or voltage across, a resistor. If a signal has finite energy, then the 

signal values must approach zero as t approaches positive and negative infinity. 
 
The time-average power of a signal is  

21lim ( )
2

T

T T
P x t dt

T∞
→∞ −

= ∫  

For example the constant signal ( ) 1x t =  (for all t) has time-average power of unity. 
 
With these definitions, we can place most, but not all, continuous-time signals into one of two 
classes:  

• An energy signal is a signal with finite E∞ . For example, | |( ) tx t e−= , and, trivially, x(t) = 

0, for all t are energy signals. For an energy signal, 0P∞ = . 
• A power signal is a signal with finite, nonzero P∞ . An example is x(t) =1, for all t, though 

more interesting examples are not obvious and require analysis. For a power signal, E∞ = ∞ . 
 
Example  Most would suspect that x(t) = sin(t) is not an energy signal, but in any case we first 
compute 

 ( )2 1 1 1
2 2 2sin ( ) cos(2 ) sin(2 )

T T

T T
t dt t dt T T

− −
= − = −∫ ∫  

Letting T →∞ confirms our suspicions, since the limit doesn’t exist. The second step of the 
power-signal calculation gives 

 ( )1 1 1
2 2 2lim sin(2 )TT

P T T∞
→∞

= − =  

and we conclude that ( )x t   is a power signal. 
 
Example  The unit-step function, defined by 

 
1, 0

( )
0, 0

t
u t

t
>⎧

= ⎨ <⎩
 

is a power signal, since 

 

/ 2 / 2
21 1

/ 2 0
1 1

2 2

lim ( ) lim 1

lim

T T
T TT T

T
T

T T

u t dt dt→∞ →∞
−

→∞

=

= =

∫ ∫
 

 

 Example There are signals that belong to neither of these classes. For example,  ( ) tx t e=  is a 
signal with both E∞  and P∞  infinite. A more unusual example is 

 
1/ 2, 1( )

0, 1
t tx t

t

−⎧⎪ ≥= ⎨
<⎪⎩

 

This signal has infinite energy but zero average power. 
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The RMS (root-mean-square) value of a power signal ( )x t  is defined as P∞ . 
These energy and power definitions also can be used for complex-valued signals, in which case 

we replace 2( )x t  by 2| ( ) |x t . 
 
1.5 Symmetry-Based Classifications of Signals  
 
A signal ( )x t  is called an even signal if ( ) ( )x t x t− =  for all t. If ( ) ( )x t x t− = − , for all t, then 

( )x t  is called an odd signal.  
 
The even part of a signal ( )x t  is defined as 

( ) ( )( )
2ev

x t x tx t + −
=  

and the odd part of ( )x t  is 
( ) ( )( )

2od
x t x tx t − −

=  

The even part of a signal is an even signal, since 
( ) ( )( ) ( )

2ev ev
x t x tx t x t− +

− = =  

and a similar calculation shows that the odd part of a signal is an odd signal. Also, for any signal 
( )x t  we can write a decomposition as 

( ) ( ) ( )ev odx t x t x t= +  
 
These concepts are most useful for real signals. For complex-valued signals, a symmetry concept 
that sometimes arises is conjugate symmetry, characterized by 

( ) ( )x t x t∗= −  
where superscript star denotes complex conjugate. 
 
1.6 Additional Classifications of Signals  
 

• Boundedness: A signal ( )x t  is called bounded if there is a finite constant K such  
that | ( ) |x t K≤ , for all t. (Here the absolute value is interpreted as magnitude if the signal is 
complex valued.) Otherwise a signal is called unbounded. That is, a signal is unbounded if no 
such K exists. For example, ( ) sin(3 )x t t=  is a bounded signal, and we can take 1K = . 
Obviously, ( ) sin(3 )x t t t=  is unbounded. 
 

• Periodicity: A signal ( )x t  is called periodic if there is a positive constant T such  
that ( ) ( )x t x t T= + , for all t. Such a T is called a period of the signal, and sometimes we say a 
signal is T-periodic. Of course if a periodic signal has period T, then it also has period 2T, 3T, and 
so on. The smallest value of T for which ( ) ( )x t x t T= + , for all t, is called the fundamental 
period of the signal, and often is denoted oT . Note also that a constant signal, x(t) = 3, for 
example, is periodic with period any T > 0, and the fundamental period is not well defined (there 
is no smallest positive number).  
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Examples  To determine periodicity of the signal ( ) sin(3 )x t t= , and the fundamental period oT  
if periodic, we apply the periodicity condition 
 sin(3( ) sin(3 ) ,t T t t+ = −∞ < < ∞  
Rewriting this as 
 sin(3 3 ) sin(3 ) ,t T t t+ = −∞ < < ∞  
it is clear that the condition holds if and only if 3T is an integer multiple of 2π , that is, T  is a 
positive integer multiple of 2 / 3π  . Thus the signal is periodic, and the fundamental period is 

2 / 3oT π= . As a second example, we regard ( ) ( ) ( )x t u t u t= + −  as periodic, by assuming for 
convenience the value (0) 1/ 2u = , but there is no fundamental period.  
 
Periodic signals are an important subclass of all signals. Physical examples include the ocean 
tides, an at-rest ECG, and musical tones (but not tunes). 
 
Typically we consider the period of a periodic signal to have units of seconds, and the 
fundamental frequency of a periodic signal is defined by  

2
o

oT
πω =  

with units of radians/second. We will use radian frequency throughout, though some other 
sources use frequency in Hertz, denoted by the symbol of . The relation between radian 
frequency and Hertz is 

1
2

o
o

o
f

T
ω
π

= =  

The main difference that arises between the use of the two frequency units involves the placement 
of 2π factors in various formulas. 
 
Given a literal expression for a signal, solving the equation 
 ( ) ( ),x t x t T for all t= +  
for the smallest value of T , if one exists, can be arbitrarily difficult. Sometimes the best approach 
is to plot out the signal and try to determine periodicity and the fundamental period by inspection. 
Such a conclusion is not definitive, however, since there are signals that are very close to, but not, 
periodic, and this cannot be discerned from a sketch. 
 
Note that the average power per period of a T-periodic signal ( )x t  becomes, 

/ 2
21

/ 2
( )

T
T T

T
P x t dt

−
= ∫  

or, more generally, 

21 ( )T T
T

P x t dt= ∫  

where we have indicated that the integration can be performed over any interval of length T. To 
prove this, for any constant ot  consider 

 21 ( )
o

o

t T

T
t

x t dt
+

∫  
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and perform the variable change / 2ot t Tτ = − − .  The average power per period is the same as 
the average power of the periodic signal. Therefore the RMS value of a periodic signal ( )x t  is 

 

1
221 ( )

T
P x t dt

T∞
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∫  

Example Ordinary household electrical power is supplied as a 60 Hertz sinusoid with RMS value 
about 110 volts. That is, 
 ( ) cos(120 )x t A tπ=  
and the fundamental period is 1/ 60oT =  sec. The amplitude A is such that 

 
1/ 60

2 2

0
110 60 cos (120 )A t dtπ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

∫  

from which we compute 140A ≈ . 
 
1.7 Discrete-Time Signals: Definitions, Classifications, and Operations  
 
For discrete-time signals, [ ]x n , we simply need to convert the various notions from the setting of 
functions to the setting of sequences.  
 

• Energy and Power: The total energy of a discrete-time signal is defined by 

 2 2[ ] lim [ ]
N

Nn n N
E x n x n

∞
∞

→∞=−∞ =−
= =∑ ∑  

The time-average power is 

 21
2 1lim [ ]

N

NN n N
P x n∞ +→∞ =−

= ∑  

and discrete-time classifications of energy signals and power signals are defined exactly as in the 
continuous-time case. 
 
Examples The unit pulse signal,  

 
1 , 0

[ ]
0 , 0

n
n

n
δ

=⎧
= ⎨ ≠⎩

 

is an energy signal, with 1E∞ = . The unit-step signal, 

 
1 , 0

[ ]
0 , 0

n
u n

n
≥⎧

= ⎨ <⎩
 

is a power signal with time-average power 
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2

0

1lim [ ]
2 1

1lim 1
2 1

1 1lim
2 1 2

N
N

n N
N

N
n

N

P u n
N

N
N
N

∞ →∞
=−

→∞
=

→∞

=
+

=
+

+
= =

+

∑

∑  

 
• Periodicity: The signal [ ]x n  is periodic if there is a positive integer N, called a  

period, such that 
 [ ] [ ]x n N x n+ =  
for all integer n. The smallest period of a signal, that is, the least value of N such that the 
periodicity condition is satisfied, is called the fundamental period of the signal. The fundamental 
period is denoted oN , though sometimes the subscript is dropped in particular contexts. 
 
Example  To check periodicity of the signal [ ] sin(3 )x n n= , we check if there is a positive 
integer N such that 
 sin(3( )) sin(3 ) , 0, 1, 2,n N n n+ = = ± ± …  
That is 
 sin(3 3 ) sin(3 ) , 0, 1, 2,n N n n+ = = ± ± …  
This condition holds if and only if 3N is an integer multiple of 2π , a condition that cannot be 
met by integer N. Thus the signal is not periodic. 
 

• Elementary operations: Elementary operations, for example addition and scalar  
multiplication, on discrete-time signals are obvious conversions from the continuous-time case. 
Elementary transformations of the independent variable also are easy, though it must be 
remembered that only integer argument values are permitted in the discrete-time case 
 

• Time Scale: Suppose [ ] [ ]y n x an= , where a is a positive or negative integer (so that the 
product, an, is an integer for all integer n). If  a = − 1, this is a time reversal. But for any case 
beyond a = ± 1, be aware that loss of information in the signal occurs, unlike the continuous-time 
case.  
 
Example  For 2a = , compare the time scaled signal with the original: 
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• Time Shift: Suppose [ ] [ ]y n x n N= − , where N is a fixed integer. If N is positive, then 

this is a right shift, or delay, and if N is negative, it is a left shift or advance. 
 

• Combination Scale and Shift: Suppose [ ] [ ]y n x an N= − , where a is a nonzero integer 
and N is an integer. As in the continuous-time case, the safest approach to interpreting the result 
is to simply plot out the signal y[n]. 
 
Example: Suppose [ ] [ ]y n x N n= − . This is a flip and shift, and occurs sufficiently often that it 
is worthwhile verifying and remembering the shortcut: y[n] can be plotted by time-reversing 
(flipping) x[n] and then shifting the reversed signal to move the original value at 0n =  to 
n N= . That is, shift N samples to the right if N > 0, and |N| samples to the left if N < 0. 
 
 
Exercises 
 
1.  Given the signal shown below,  

 
sketch the signal ( )y t =  
(a) ( ) ( 1)x t x t− −  
(b) ( 2 )x t−  
(c) ( 1) (1 )x t u t− −  
(d) (2 ) ( 3 )x t x t+ −  
(e) (3 1)x t −  
 
2.  Determine if the following signals are power signals or energy signals, and compute the total 
energy or time-average power, as appropriate. 
(a) ( ) sin(2 ) ( )x t t u t=  
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(b) | |( ) tx t e−=  
(c) ( ) ( )x t tu t=  

(d) 3( ) 5 ( )tx t e u t−=  
 
3.  For an energy signal ( )x t , prove that the total energy is the sum of the total energy of the even 
part of ( )x t  and the total energy of the odd part of  ( )x t . 
 
4.  If a given signal ( )x t has total energy 5E = , what is the total energy of the signal 

( ) 2 (3 4)y t x t= − ? 
 

5. Under what conditions on the real constant α is the continuous-time signal ( ) ( )tx t e u tα= −  an 
energy signal? When your conditions are satisfied, what is the energy of the signal? 
 
6.  Sketch the even and odd parts of the signals below.  
(a)                                                                             

   
 
 
(b) 

 
 
7.   Suppose that for a signal ( )x t  it is known that { ( )} { ( )} 1Ev x t Od x t= = for 0t > .What is 

( )x t ? 
 
8.  Determine which of the following signals are periodic, and specify the fundamental period. 

(a) ( ) cos(2 )jx t e tπ π π= +  

(b) 2( ) sin ( )x t t=  

(c) ( ) ( 2 ) ( 1 2 )
k

x t u t k u t k
∞

=−∞
= − − − −∑  

(d) 2 3( ) 3 j tx t e π−=  
 
9.  Suppose that 1( )x t  and 2x ( t )  are periodic signals with respective fundamental periods 1T  
and 2T . Show that if there are positive integers m and n such that 
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 1

2

T m
T n

=  

(that is, the ratio of fundamental periods is a rational number), then 1 2x( t ) x ( t ) x ( t )= +  is 
periodic. If the condition holds, what is the fundamental period of x( t ) ? 
 
10.  Determine which of the following signals are bounded, and specify a smallest bound. 

(a) 3( ) ( )tx t e u t=  

(b) 3( ) ( )tx t e u t= −  

(c) 6| |( ) 4 tx t e−=  

(d)  3 5( ) 2 sin( ) ( )tx t t e t u t−= −  
 
11.  Given the signal [ ] [ ] [ 1]x n n nδ δ= − − , sketch [ ]y n =  
(a) [4 1]x n −  
(b) [ ] [1 ]x n u n−  
(c) 3 [ 2 3]x n− +  
(d)  [2 ] [1 ]x n x n− −  
 
12.  Determine whether the following signals are periodic, and if so determine the fundamental 
period. 
(a) [ ] [ ] [ ]x n u n u n= + −  

(b) 3[ ] j nx n e π−=  

(c) 2[ ] ( 1) j nnx n e
π

= − +  

(d) 4[ ] cos( )x n nπ=  

 
13.  Suppose x[n] is a discrete-time signal, and let y[n]=x[2n]. 
(a) If x[n] is periodic, is y[n] periodic? If so, what is the fundamental period of  y[n] in terms of 
the fundamental period of  x[n]? 
(b) If y[n] is periodic, is x[n] periodic? If so, what is the fundamental period of  x[n] in terms of 
the fundamental period of  y[n]? 
 
14.  Under what condition is the sum of two periodic discrete-time signals periodic? When the 
condition is satisfied, what is the fundamental period of the sum, in terms of the fundamental 
periods of the summands? 
 

15.  Is the signal [ ] 3( 1) [ ]nx n u n= −  an energy signal, power signal, or neither? 
 

16.  Is the signal 2[ ] j n j nx n e eπ π−= +  periodic? If so, what is the fundamental period? 
 

17.  Answer the following questions about the discrete-time signal  ( / 2)[ ] j nx n e π−= . 
(a) Is [ ]x n  periodic? If so, what is its fundamental period? 
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(b) Is [ ]x n  an even signal? Is it an odd signal? 
(c) Is [ ]x n an energy signal? Is it a power signal? 
 
18.  Which of the following signals are periodic? For those that are periodic, what is the 
fundamental period? 

(a) 
4

[ ] j nx n e π=  

(b)  
2
8[ ] j nx n e π

=  

(c)  
7
8 ( 1)[ ] j nx n e π− −

=  
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Notes for Signals and Systems 

 
Much of our discussion will focus on two broad classes of signals: the class of complex 
exponential signals and the class of singularity signals. Though it is far from obvious, it turns out 
that essentially all signals of interest can be addressed in terms of these two classes. 
 
2.1  The Class of CT Exponential Signals 
 
There are several ways to represent the complex-valued signal 

( ) ,atx t c e t= −∞ < < ∞  
where both c and a are complex numbers. A convenient approach is to write c  in polar form, and 
a in rectangular form, 

| | ,oj
o oc c e a jφ σ ω= = +  

where o cφ = ∠  and where we have chosen notations for the rectangular form of a that are 
customary in the field of signals and systems. In addition, the subscript o’s are intended to 
emphasize that the quantities are fixed real numbers. Then 

( )

( )

( ) | |

| |

o o o

o o o

j j t

t j t

x t c e e

c e e

φ σ ω

σ ω φ

+

+

=

=
 

Using Euler’s formula, we can write the signal in rectangular form as 

( ) | | cos( ) | | sin( )o ot t
o o o ox t c e t j c e tσ σω φ ω φ= + + +  

 
There are two special cases that are of most interest. 
 
Special Case 1: Suppose both c and a are real. That is, 0oω = and oφ   is either 0 or π. Then we 
have the familiar exponentials 

| | , 0
( )

| | ,

o

o

t
o

t
o

c e if
x t

c e if

σ

σ

φ

φ π

⎧ =⎪= ⎨
− =⎪⎩

 

Or, more simply,  

( ) otx t c eσ=  
 

Special Case 2: Suppose c is complex and a is purely imaginary. That is, 0oσ = . Then 
( )( ) | |

| | cos( ) | | sin( )

o oj t

o o o o

x t c e
c t j c t

ω φ

ω φ ω φ

+=
= + + +

 

Both the real and imaginary parts of ( )x t  are periodic signals, with fundamental period 
2
| |o

oT π
ω=  

Since the independent variable, t, is viewed as time, units of oω  typically are radians/second and 
units of  oT  naturally are seconds. A signal of this form is often called a phasor. 
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Left in exponential form, we can check directly that given any oω , ( )x t  is periodic with 
period 2 / | |o oT π ω= : 

[ ( ) ]

( ) 2

( )

( ) | |

| |

| |
( )

o o o

o o

o o

j t T
o

j t j

j t

x t T c e

c e e

c e
x t

ω φ

ω φ π

ω φ

+ +

+ ±

+

+ =

=

=
=

 

Also, it is clear that oT  is the fundamental period of the signal, simply by attempting to satisfy 
the periodicity with any smaller, positive value for the period. 
 
We can view a phasor signal as a vector at the origin of length | |c  rotating in the complex plane 
with angular frequency oω  radians/second, beginning with the angle oφ  at 0t = .  If 0oω > , 
then the rotation is counter clockwise. If 0oω < , then the rotation is clockwise. Of course, 
if 0oω = , then the signal is a constant, and it is not surprising that the notion of a fundamental 
period falls apart. 
 
The applet in the link below illustrates this rotating-vector interpretation, and also displays the 
imaginary part of the phasor, that is, the projection on the vertical axis. 
 

One Phasor 
 
Sums of phasors that have different frequencies are also very important. These are best visualized 
using the “head-to-tail” construction of vector addition. The applet below illustrates. 
 

Sum of Two Phasors 
 
The question of periodicity becomes much more interesting for phasor sums, and we first discuss 
this for sums of two phasors. Consider 

 1 21 2( ) j t j tx t c e c eω ω= +  
The values of 1c  and 2c  are not essential factors in the periodicity question, but the values of 1ω  
and 2ω  are. It is worthwhile to provide a formal statement and proof of the result, with 
assumptions designed to rule out trivialities and needless complexities. 
 
Theorem  The complex valued signal 

1 21 2( ) j t j tx t c e c eω ω= +  
with  1 2, 0c c ≠  and 2 1, 0ω ω ≠  is periodic if and only if there exists a positive frequency 0ω  
and integers k and l such that 
 1 0 2 0,k lω ω ω ω= =  (2.1) 
Furthermore, if 0ω is the largest frequency for which (2.1) can be satisfied, in which case 
it is called the fundamental frequency for ( )x t , then the fundamental period of ( )x t  
is 02 /oT π ω= . 
 

http://www.ece.jhu.edu/~rugh/littlephasor/littlephasor1.htm
http://www.ece.jhu.edu/~rugh/littlephasor/littlephasor2.htm
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Proof  First we assume that positive 0ω  and the integers k, l satisfy (2.1). Choosing 02 /T π ω= , 
we see that 

 

0 0

0 0

0 0

( ) ( )
1 2

2 2
1 2

1 2

( )

( )

jk t T jl t T

jk t jl tjk jl

jk t jl t

x t T c e c e

e c e e c e

c e c e
x t

ω ω

ω ωπ π

ω ω

+ ++ = +

= +

= +
=

 

for all t, and ( )x t is periodic. It is easy to see that if oω  is the largest frequency such that (2.1) is 
satisfied, then the fundamental period of ( )x t  is 2 /o oT π ω= . (Perhaps we are beginning to 
abuse the subscript oh’s and zeros…) 
 
Now suppose that x(t) is periodic, and T > 0 is such that ( ) ( )x t T x t+ =  for all t. That is,  

1 2 1 2( ) ( )
1 2 1 2

j t T j t T j t j tc e c e c e c eω ω ω ω+ ++ = +  
for all t. This implies 

1 2 2 1( )
1 2( 1) ( 1) 0j T j T j te c e c eω ω ω ω−− + − =  

for all t. Picking the particular  times 0t =  and 2 1/( )t π ω ω= −  gives the two algebraic 
equations 

1 2

1 2

1 2

1 2

( 1) ( 1) 0

( 1) ( 1) 0

j T j T

j T j T

e c e c

e c e c

ω ω

ω ω

− + − =

− − − =
 

By adding these two equations, and also subtracting the second from the first, we obtain 

 1 2 1j T j Te eω ω= =  
Therefore both frequencies must be integer multiples of frequency  2 /Tπ . 
 
Example  The signal 

 2 3( ) 4 5j t j tx t e e= −  
is periodic with fundamental frequency 1oω = , and thus fundamental period 2π. The signal 

 2( ) 4 5j t j tx t e e π= −  
is not periodic, since the frequencies 2 and π cannot be integer multiples of a fixed frequency. 
 
The theorem generalizes to the case where ( )x t  is a sum of any number of complex exponential 
terms: the signal is periodic if and only if there exists 0ω  such that every frequency present in the 
sum can be written as an integer multiple of 0ω . Such frequency terms are often called 
harmonically related. The applet below can be used to visualize sums of several harmonically 
related phasors, and the imaginary part exhibits the corresponding periodic, real signal.  
 

Phasor Sums 
 
 
 
 
 

http://www.ece.jhu.edu/~rugh/littlephasor/littlephasork.htm
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2.2 The Class of CT Singularity Signals 
 
The basic singularity signal is the unit impulse, ( )tδ , a signal we invent in order to have the 
following sifting property with respect to ordinary signals, ( )x t : 
  

 ( ) ( ) (0)x t t dt xδ
∞

−∞
=∫  (2.2) 

That is, ( )tδ  causes the integral to “sift out” the value of  (0)x . Here ( )x t is any continuous-
time signal that is a continuous function at t = 0, so that the value of ( )x t  at 0t =  is well defined. 
For example, a unit step, or the signal ( ) 1/x t t= , would not be eligible for use in the sifting 
property. (However, some treatments do allow a finite jump in ( )x t  at 0t = , as occurs in the unit 
step signal, and the sifting property is defined to give the mid-point of the jump. That is, 

 
(0 ) (0 )( ) ( )

2
x xx t t dtδ

+ −∞

−∞

+
=∫  

For example, if the signal is the unit step, then the sift would yield 1/ 2 .) 
 
A little thought, reviewed in detail below, shows that ( )tδ cannot be a function in the ordinary 
sense. However, we develop further properties of the unit impulse by focusing on implications of 
the sifting property, while insisting that in other respects ( )tδ behave in a manner consistent with 
the usual rules of arithmetic and calculus of ordinary functions. 
 

• Area  
 

 ( ) 1t dtδ
∞

−∞
=∫  (2.3) 

Considering the sifting property with the signal ( ) 1x t = , for all t, we see the unit impulse must 
satisfy (2.3).  
 

• Time values 
 ( ) 0, 0t for tδ = ≠  (2.4) 
 
By considering ( )x t to be any signal that is continuous at 0t =  with (0) 0x = , for example, the 

signals  x(t) = 2 3, , ,t t t … , it can be shown that there is no contribution to the integral in (2.2) for 
nonzero values of the integration variable. This indicates that the impulse must be zero for 
nonzero arguments. Obviously (0)δ  cannot be zero, and indeed it must have, in some sense, 
infinite value. That is, the unit impulse is zero everywhere except 0t = , and yet has unit area. 
This makes clear the fact that we are dealing with something outside the realm of basic calculus. 
 
Notice also that these first two properties imply that  

 ( ) 1
a

a
t dtδ

−
=∫  

for any 0a > . 
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• Scalar multiplication 
 

We treat the scalar multiplication of an impulse the same as the scalar multiplication of an 
ordinary signal. To interpret the sifting property for ( )a tδ , where a is a constant, note that the 
properties of integration imply  

 ( ) [ ( )] ( ) ( ) (0)x t a t dt a x t t dt a xδ δ
∞ ∞

−∞ −∞
= =∫ ∫  

The usual terminology is that aδ(t) is an “impulse of area a,” based on choosing ( ) 1x t = , for all 
t, in the sifting expression. 
 

• Signal Multiplication 
 ( ) ( ) (0) ( )z t t z tδ δ=  
 
When a unit impulse is multiplied by a signal z(t), which is assumed to be continuous at t = 0, the 
sifting property gives 

 ( ) [ ( ) ( )] [ ( ) ( )] ( ) (0) (0)x t z t t dt x t z t t dt x zδ δ
∞ ∞

−∞ −∞
= =∫ ∫  

This is the same as the result obtained when the unit impulse is multiplied by the constant (0)z , 

 ( )[ (0) ( )] (0) ( ) ( ) (0) (0)x t z t dt z x t t dt z xδ δ
∞ ∞

−∞ −∞
= =∫ ∫  

 
Therefore we conclude the signal multiplication property shown above. 
 

• Time shift 
 

We treat the time shift of an impulse the same as the time shift of any other signal. To interpret 
the sifting property for the time shifted unit impulse, ( )ot tδ − , a change of integration variable 
from t to ot tτ = −  gives 

 ( ) ( ) ( ) ( ) ( )o o ox t t t dt x t d x tδ τ δ τ τ
∞ ∞

−∞ −∞
− = + =∫ ∫  

This property, together with the function multiplication property gives the more general statement 
 ( ) ( ) ( ) ( )o o oz t t t z t t tδ δ− = −  
where ot  is any real constant and z(t) is any ordinary signal that is a continuous function of t at 

ot t= . 
• Time scale 
 

Since an impulse is zero for all nonzero arguments, time scaling an impulse has impact only with 
regard to the sifting property where, for any nonzero constant a, 

 1( ) ( ) (0), 0
| |

x t at dt x a
a

δ
∞

−∞
= ≠∫  

 



 28

To justify this expression, assume first that a > 0. Then the sifting property must obey, by the 
principle of consistency with the usual rules of integration, and in particular with the change of 
integration variable from t to τ = at, 

 1 1( ) ( ) ( / ) ( ) (0) , 0x t at dt x a d x aa aδ τ δ τ τ
∞ ∞

−∞ −∞
= = >∫ ∫  

A similar calculation for a < 0, where now the change of integration variable yields an 
interchange of limits, gives 

 

1( ) ( ) ( / ) ( )

1 1( / ) ( ) (0) , 0

x t at dt x a da

x a d x aa a

δ τ δ τ τ

τ δ τ τ

∞ −∞

−∞ ∞
∞

−∞

=

= − = − <

∫ ∫

∫

 

These two cases can be combined into one expression given above. Thus the sifting property 
leads to the definition:  

 
1( ) ( ) , 0

| |
at t a

a
δ δ= ≠  

 
• Symmetry 
 

Note that the case 1a =  in time scaling gives the result that δ(−t) acts in the sifting property 
exactly as δ(t), so we regard the unit impulse as an “even function.” Other interpretations are 
possible, but we will not go there. 
 
We graphically represent an impulse by an arrow, as shown below. 

 
(If the area of the impulse is negative, a < 0, sometimes the arrow is drawn pointing south.) 
 
We could continue this investigation of properties of the impulse, for example, using the calculus 
consistency principle to figure out how to interpret ( )oat tδ − , ( ) ( )z t atδ , and so on. But we only 
need the properties justified above, and two additional properties that are simply wondrous. These 
include an extension of the sifting property that violates the continuity condition: 

• Special Property 1 

 ( ) ( ) ( )t d tδ τ δ τ τ δ
∞

−∞
− =∫  

Note here that the integration variable is τ, and t is any real value. Even more remarkable is an 
expression that relates impulses and complex exponentials: 
 

• Special Property 2 

 1( )
2

jtt e dωδ ω
π

∞

−∞
= ∫  



 29

Note here that the integral simply does not converge in the usual sense of basic calculus, since 
| | 1jte ω = for any (real) values of t and ω. 
 
Remark  Our general approach to these impulse properties will be “don’t think about impulses… 
simply follow the rules.” However, to provide a bit of explanation, with little rigor, we briefly 
discuss one of the mathematical approaches to the subject. To arrive at the unit impulse, consider 
the possibility of an infinite sequence of functions, ( ), 1, 2,3,nd t n = … , that have the unit-area 
property 

 ( ) 1, 1,2,3,nd t dt n
∞

−∞
= =∫ …  

and also have the property that for any other function x(t) that is continuous at t = 0, 

 lim ( ) ( ) (0)n nd t x t dt x
∞

→∞
−∞

=∫  

Here the limit involves a sequence of numbers defined by ordinary integrals, and can be 
interpreted in the usual way. However we next interchange the order of the limit and the 
integration, without proper justification, and view δ(t) as “some sort” of limit: 
 ( ) lim ( )n nt d tδ →∞=  
This view is useful for intuition purposes, but is dangerous if pursued too far by elementary 
means. In particular, for the sequences of functions ( )nd t  typically considered, the limit does not 
exist in any usual sense. 
 
Examples  Consider the rectangular-pulse signals 

 
1 1

2 2,
( ) , 1, 2,3,

0,
n nn

n t
d t n

else

−⎧ < <⎪= =⎨
⎪⎩

…  

The pulses get taller and thinner as n increases, but clearly every ( )nd t  is unit area, and the 
mean-value theorem can be used to show 

 
1/(2 )

1/(2 )

(0)( ) ( ) ( )
n

n
n

xd t x t dt n x t dt n
n

∞

−∞ −
= ≈∫ ∫  

with the approximation getting better as n increases. Thus we can casually view a unit impulse as 
the limit, as n →∞ , of these unit-area rectangles. A similar example is to take ( )nd t  to be a 
triangle of height n, width 2/n, centered at the origin. But it turns out that a more interesting 
example is to use the sinc function defined by 

 
sin( )sinc( )

( )
tt

t
π

π
=  

and let  
 ( ) sin ( ) , 1, 2,3,nd t n c nt n= = …  
It can be shown, by evaluating an integral that is not quite elementary, that these signals all have 
area 2π, and that the sifting property 

 ( ) ( ) (0)nd t x t dt x
∞

−∞
≈∫  
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 is a better and better approximation as n grows without bound. Therefore we can view an 
impulse of area 2π, that is, 2 ( )tπδ , as a limit of these functions. This sequence of sinc signals is 
displayed in the applet below for a range of n, and you can get a pictorial view of how an impulse 
might arise from sinc’s as n increases, in much the same way as the impulse arises from height n, 
width 1/n , rectangular pulses as n increases.  
 

Family of Sincs 
 
 
Remark  Special Property 2 can be intuitively understood in terms of our casual view of impulses 
as follows. Let 

 

1
2

1
2

1
2 2

( )

[cos( ) sin( )]

cos( ) sin( )

W
j t

W
W

W

W
W Wj

W W

d t e d

t j t d

t d t d

ω
π

π

π π

ω

ω ω ω

ω ω ω ω

−

−

− −

=

= +

= +

∫

∫

∫ ∫

 

Using the fact that a sinusoid is an odd function of its argument, 

1

0

1

( ) cos( )

sin( )

sinc( )

W
W

W Wt

d t t d

Wt
t

π

π

π π

ω ω=

=

=

∫

 

 
This ( )Wd t can be shown to have unit area for every W > 0, again by a non-elementary 
integration, and again the sifting property is approximated when W is large. Therefore the Special 
Property 2 might be expected. The applet below shows a plot of ( )Wd t  as W is varied, and 
provides a picture of how the impulse might arise as W increases. 
 

Another Sinc Family 
 
• Additional Singularity Signals 
 
From the unit impulse we generate additional singularity signals using a generalized form of 
calculus. Integration leads to 

 
0, 0

( )
1, 0

t t
d

t
δ τ τ

−∞

<⎧
= ⎨ >⎩

∫  

which is the familiar unit-step function, ( )u t . (We leave the value of u(0), where the jump 
occurs, freely assignable following our general policy.) 
The “running integral” in this expression actually can be interpreted graphically in very nice way. 
And a variable change from τ to σ = t − τ gives the alternate expression 

http://www.ece.jhu.edu/~rugh/sinc1/sinc1.html
http://www.ece.jhu.edu/~rugh/sinc2/sinc2.html
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0

( ) ( )u t t dδ σ σ
∞

= −∫  

Analytically this can be viewed as an application of a sifting property applied to the case x(t) = 
u(t): 

 
0

( ) ( ) ( ) ( ) ( ) ( )t d u t d u t d u tδ σ σ σ δ σ σ σ δ σ σ
∞ ∞ ∞

−∞ −∞
− = − = − =∫ ∫ ∫  

This is not, strictly speaking, legal for t = 0, because of the discontinuity there in u(t), but we 
ignore this issue. 
 
By considering the running integral of the unit-step function, we arrive at the unit-ramp: 

 
0, 0

( )
, 0

( )

t t
u d

t t

tu t

τ τ
−∞

<⎧
= ⎨ ≥⎩

=

∫  

Often we write this as r(t). Notice that the unit ramp is a continuous function of time, though it is 
unbounded. 
Continuing, 

 
2

2

0, 0
( )

/ 2, 0

( )
2

t t
r d

t t

t u t

τ τ
−∞

<⎧⎪= ⎨
≥⎪⎩

=

∫
 

which might be called the unit parabola, p(t). We stop here, as further integrations yield signals 
little used in the sequel. 
 
We can turn matters around, using differentiation and the fundamental theorem of calculus. 
Clearly, 

 ( ) ( ) ( )
td dp t r d r t

dt dt
τ τ

−∞
= =∫  

and this is a perfectly legal application of the fundamental theorem since the integrand, r(t), is a 
continuous function of time. However, we go further, cheating a bit on the assumptions, since the 
unit step is not continuous,  to write 

 ( ) ( ) ( )
td dr t u d u t

dt dt
τ τ

−∞
= =∫  

That this cheating is not unreasonable follows from a plot of the unit ramp, r(t), and then a plot of 
the slope at each value of t. 
Cheating more, we also write 

 ( ) ( ) ( )
td du t d t

dt dt
δ τ τ δ

−∞
= =∫  

Again, a graphical interpretation makes this seem less unreasonable. 
 
We can also consider “derivatives” of the unit impulse. The approach is again to demand 
consistency with other rules of calculus, and use integration by parts to interpret the “sifting 
property” that should be satisfied. We need go no further than the first derivative, where 
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( )[ ( )] ( ) ( ) ( ) ( )

(0)

d
dtx t t dt x t t x t t dt

x

δ δ δ
∞ ∞

∞
−∞

−∞ −∞
= −

= −

∫ ∫ �

�

 

This assumes, of course, that ( )x t�  is continuous at 0t = , that is, ( )x t  is continuously 
differentiable at 0t = . This unit-impulse derivative is usually called the unit doublet, and 
denoted ( )tδ� . Various properties can be deduced, just as for the unit impulse. For example, 
choosing ( ) 1, ,x t t= −∞ < < ∞  the sifting property for the doublet gives 

 ( ) 0t dtδ
∞

−∞
=∫ �  

In other words, the doublet has zero area – a true ghost. It is also easy to verify the property 

 ( ) ( ) ( )o ox t t t dt x tδ
∞

−∞
− = −∫ � �  

and, finally, we sketch the unit doublet as shown below. 

 
 
All of the “generalized calculus” properties can be generalized in various ways. For example, the 
product rule gives 

 [ ]( ) 1 ( ) ( )

( )

d t u t u t t t
dt

u t

δ= +

=
 

where we have used the multiplication rule to conclude that ( ) 0t tδ = for all t . As another 
example, the chain rule gives 

 ( ) ( )o o
d u t t t t
dt

δ− = −  

Remark  These matters can be taken too far, to a point where ambiguities begin to overwhelm 
and worrisome liberties must be taken. For example, using the product rule for differentiation, 

and ignoring the fact that 2( )u t is the same signal as u(t),  

 2( ) ( ) ( ) ( ) ( ) 2 ( ) ( )d
dt u t u t u t u t u t u t tδ= + =� �  

The multiplication rule for impulses does not apply, since u(t) is not continuous at t = 0, and so 
we are stuck. However if we interpret u(0) as ½, the midpoint of the jump, we get a result 
consistent with ( ) ( )u t tδ=� . We will not need to take matters this far, since we use these 
generalized notions only for rather simple signals. 
 
2.3 Linear Combinations of Singularity Signals and Generalized Calculus 
 
For simple signals, that is, signals with uncomplicated wave shapes, it is convenient for many 
purposes to use singularity signals for representation and calculation.  
 
Example  The signal shown below can be written as a sum of step functions, 
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 ( ) 4 ( 1) 4 ( 1)x t u t u t= + − −  

 
Another representation is  
 ( ) 4 ( 1) (1 )x t u t u t= + −  
This uses the unit steps as “cutoff” functions, and sometimes this usage is advantageous. 
However for further calculation, representation as a linear combination usually is much simpler. 
Differentiation of the first expression for ( )x t  gives, using our generalized notion of 
differentiation, 
 
 ( ) 4 ( 1) 4 ( 1)x t t tδ δ= + − −�  
This signal is shown below. 

 
The same result can be obtained by differentiating the “step cutoff” representation for x(t), though 
usage of the product rule and interpretation of the final result makes the derivative calculation 
more difficult. That is, 
 

 

( ) 4 ( 1) (1 ) 4 ( 1) (1 )
4 ( 1) 4 (1 )
4 ( 1) 4 ( 1)

x t t u t u t t
t t
t t

δ δ
δ δ
δ δ

= + − + + −
= + − −
= + − −

�
 

(The first step makes use of the product rule for differentiation, the second step uses the signal-
multiplication rule for impulses, and the last step uses the evenness of the impulse.) 
 
Of course, regardless of the approach taken, graphical methods easily verify 

 ( ) ( )
t

x d x tτ τ
−∞

=∫ �  

in this example. Note that the constant of integration is taken to be zero since it is known that the 
signal ( )x t  is zero for 1t < − . 
 
Example  The signal shown below can be written as 
 
 ( ) 2 ( ) 2 ( 1) 2 ( 3)x t r t r t u t= − − − −  
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Again, the derivative is straightforward to compute, 
 
 ( ) 2 ( ) 2 ( 1) 2 ( 3)x t u t u t tδ= − − − −�  
and sketch, 

 
Graphical interpretations of differentiation support these computations. 
 
While representation in terms of linear combinations of singularity signals leads to convenient 
shortcuts for some purposes, caution should be exercised. In the examples so far, well-behaved 
energy signals have been represented as linear combinations of signals that are power signals, 
singularity signals, and unbounded signals. This can introduce complications in some contexts. 
 
Sometimes we use these generalized calculus ideas for signals are nonzero for infinite time 
intervals. 
 
Example  A right-sided cosine signal can be written as 
 
 ( ) cos(2 ) ( )x t t u t=  
 
Then differentiation using the product rule, followed by the impulse multiplication rule, gives 

 
( ) 2sin(2 ) ( ) cos(2 ) ( )

2sin(2 ) ( ) ( )
x t t u t t t

t u t t
δ

δ
= − +
= − +

�
 

 
You should graphically check that this is a consistent result, and that the impulse in ( )x t�   is 
crucial in verifying the relationship 
 

( ) ( )
t

x d x tτ τ
−∞

=∫ �  

 
Example The periodic signal shown below can be written as 

 [ ]( ) 4 ( 1 3 ) 4 ( 1 3 )
k

x t u t k u t k
∞

=−∞
= + − − − −∑  
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Then 

 [ ]( ) 4 ( 1 3 ) 4 ( 1 3 )
k

x t t k t kδ δ
∞

=−∞
= + − − − −∑�  

by generalized differentiation, and a sketch of ( )x t�  is shown below. 

 
 
Exercises 
 
1.  Determine whether the following signals are periodic, and if so determine the fundamental 
period. 

(a) ( 2 )( ) j tx t e π− −=  

(b) 2( ) jtx t e π− +=  

(c) 4 5( ) 3 2j t j tx t e e= −  

(d) 
7
2 7( ) j t j tx t e e= +  

(e) 2 7( 1) 6( 1)( ) 6 4 3j t j t j tx t e e e− − += + −  

(f)  ( 2 ) ( 2 )( ) ( 2 ) ( 2 1)t k t k

k
x t e u t k e u t k

∞ − − − −

=−∞

⎡ ⎤= − − − −⎣ ⎦∑  

 
2.  Simplify the following expressions and sketch the signal. 
(a) ( ) ( 2) ( ) [ ( ) ( 1)]d

dtx t t r t u t r tδ= − + − −  

(b) 3( ) ( ) ( 1) ( 2) (1 ) ( )tx t t t e t u t r tδ δ δ+= − − + + −  

(c) ( ) ( 3) 2 ( 4) ( 5)
t

x t u d r t r tτ τ
−∞

= − − − + −∫  

(d)  [ ]( ) ( 2) ( 2) ( )
t

d
dtx t d u t r tδ τ τ

−∞
= + + +∫  

3.  Sketch the signal ( )x t  and compute and sketch ( )
t

x dσ σ
−∞
∫ . Check your integration by 

"graphical differentiation." 
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(a) ( ) ( ) ( 1) 2 ( 2) 3 ( 3) ( 4)x t u t u t t t tδ δ δ= − − + − − − + −�  
(b) ( ) 3 ( ) 3 ( 4) 12 ( 5)x t u t u t tδ= − − − −  
(c)  ( ) 2 ( 1) 3 ( ) ( 2)x t u t u t u t= − + + − −  
(d) ( ) ( ) ( 1) 2 ( 2) ( 4)x t u t t t tδ δ δ= + − − − + −  
 
4.  Sketch the signal ( )x t and compute and sketch  ( )x t� . Check your derivative by "graphical 
integration." 
(a) ( ) ( 1) ( ) ( ) 3 ( 1) ( 2)x t r t r t u t u t u t= + − + − − + −  
(b) ( ) 2 ( 1) 4 ( ) 2 ( 1)x t r t r t r t= + − + −  
(c) ( ) 2 ( 1) (2 / 3) ( 1) (2 / 3) ( 4)x t u t r t r t= − − − + −   
 
5.   Write a mathematical expression for the signal ( )x t  shown below. 

 
Compute and sketch ( )x t� , the generalized derivative of ( )x t . 
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Notes for Signals and Systems 
 

3. 1 The Class of  DT Exponential Signals 
 
Consider a discrete-time signal 

[ ] anx n c e=  
where both c and a are complex numbers, and, as usual, the integer index, or sample number, 
covers the range  −∞  < n < ∞. To more conveniently interpret x[n], write c  in polar form, and a 
in rectangular form, 

| | ,oj
o oc c e a jφ σ ω= = +  

where o cφ = ∠  and we have chosen customary notations for the rectangular form of  a. Then 
( )

( )

[ ] | |

| |

o o o

o o o

j j n

n j n

x n c e e

c e e

φ σ ω

σ ω φ

+

+

=

=
 

Using Euler’s formula, we can write this signal in rectangular form as 
[ ] | | cos( ) | | sin( )o on n

o o o ox n c e n j c e nσ σω φ ω φ= + + +  
This expression is similar to the continuous-time case, but differences appear upon closer 
inspection. We need only consider three cases in detail. 
 
Special Case 1: Suppose both c and a are real. That is, 0oω =  and oφ   has value either 0 or π. 
Then, 

[ ] onx n c eσ=  
and we have the familiar interpretation of an exponentially-decreasing (if 0oσ < ) or 
exponentially-increasing 0oσ >  sequence of values, with the obvious consideration of the sign 
of c. 
 
Special Case 2:  Suppose c is real and a has the special form 
 (2 1)oa j kσ π= + +  
where k is an integer. In this case, 

 
[ (2 1) ] (2 1)[ ]

( 1) ( )

o o

o o

j k n n j k

n n n

x n c e c e e

c e c e

σ π σ π

σ σ

+ + += =

= − = −
 

Or, more simply, we can write 

[ ] nx n cα=  
 

where oeσα = −  is a real negative number. The appearance of x[n] is a bit different in this case, 
as shown below for 1c = . 
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Of course, these first two special cases can be combined by considering that α  might be either 
positive or negative. 
 
Special Case 3: Suppose c is complex and a is purely imaginary. That is, 0oσ = , and we are 
considering a discrete-time phasor. Then 

( )

[ ] | |

| |
| | cos( ) | | sin( )

o o

o o

j j n

j n

o o o o

x n c e e

c e
c n j c n

φ ω

ω φ

ω φ ω φ

+

=

=
= + + +

 

Since the independent variable, n, is viewed as a sample index, units of oω  typically are 
radians/sample for discrete-time signals. In order to simplify further discussion, we assume that c 
= 1. 
 
The first difference from the continuous-time case involves the issue of periodicity. The signal  

 [ ] oj nx n e ω=  
is periodic if and only if there is a positive integer N such that  

 ( )o oj n N j ne eω ω+ =  
for all integer n. This will hold if and only if N satisfies  

 1oj Ne ω =  
that is, if and only if 2oN mω π=  for some integer m. In words, x[n] is periodic if and only if the 
frequency oω  is a rational multiple of  2π, 

 2o
m
N

ω π=  

for some integers m and N. If this is satisfied, then the fundamental period of the signal is 
obtained when the smallest value of N is found for which this expression holds. Obviously, this 
occurs when m, N are relatively prime, that is, m and N have no common integer factors other 
than unity.  

Example  2[ ] j nx n e=  is not periodic, since 2oω =  cannot be written as a rational multiple of 
2π . 

Example  8[ ]
j n

x n e
π

=  is periodic, with fundamental period 16, since 

 
1 2

8 16
π π=  
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The second major difference between continuous and discrete-time complex exponentials 
concerns the issue of frequency. In continuous time, as the frequency oω  increases, the phasor 
rotates more rapidly. But in discrete time, consider what happens when the frequency is raised or 
lowered by 2π: 

 ( 2 ) 2o o oj n j n j nj ne e e eω π ω ωπ± ±= =  
That is, the complex exponential signal doesn’t change. Clearly, raising or lowering the frequency 
by any integer multiple of 2π has the same (absence of) effect. Thus we need only consider 
discrete-time frequencies in a single 2π range. Most often the range of choice is oπ ω π− < ≤  
for reasons of symmetry, though sometimes the range 
0 2oω π≤ <  is convenient. 
 
As a final observation, in continuous time a phasor rotates counterclockwise if the frequency oω  
is positive, and clockwise if the frequency is negative. However there is no clear visual 
interpretation of direction of rotation depending on the sign of frequency in the discrete time case. 
 
To balance these complications in comparison with the continuous-time case, the issue of 
periodicity of sums of periodic discrete-time phasors is relatively simple. 
 
Theorem  For the complex-valued signal 

 1 21 2[ ] j n j nx n c e c eω ω= +  
suppose both frequencies are rational multiples of 2π,   
 1 1 1 2 2 2( / )2 , ( / )2m N m Nω π ω π= =  
Then [ ]x n  is periodic with period (not necessarily fundamental period) given by 1 2N N N= . 
 
Proof  By direct calculation, using the claimed period N, 

 

1 2

1 2
1 2 1 21 1 2 2

1 1 2 2 2 1

1 2

( ) ( )
1 2

2 2
1 2

2 2
1 2

1 2

[ ]

[ ]

m m
N N

j n N j n N

j N N j N Nj n j n

j n jm N j n jm N

j n j n

x n N c e c e

c e e c e e

c e e c e e

c e c e
x n

ω ω

π πω ω

ω π ω π

ω ω

+ ++ = +

= +

= +

= +
=

 

for any n.   
 
 
The applet below illustrates the behavior of discrete-time phasors for various choices of 
frequency, oω , and suggests a number of exercises. 
 

Discrete-Time Frequency 
 
Remark  The various analyses of phasor properties can also be carried out for real trigonometric 
signals, though the reasoning often requires trig identities and is more involved than for phasors. 
For example, suppose 
 [ ] cos( )ox n nω=  

http://www.jhu.edu/~signals/dtphasor/


 40

is periodic with period N. That is, for all integers n, 
 cos[ ( )] cos( )o on N nω ω+ =  
This can be written as 

 
cos( ) cos( ) cos( ) sin( )sin( )

cos( ) ,
o o o o o o

o

n N n N n N
n n

ω ω ω ω ω ω
ω

+ = −

= −∞ < < ∞
 

We conclude from this that N must be such that cos( ) 1, sin( ) 0o oN Nω ω= = . Thus 
2oN mω π=  for some integer m, that is, oω  must be a rational multiple of 2π . 

 
3.2  The Class of  DT Singularity Signals 
 
The basic discrete-time singularity signal is the unit pulse, 

 
1, 0

[ ]
0,

n
n

otherwise
δ

=⎧
= ⎨
⎩

 

Contrary to the continuous-time case, there is nothing “generalized” about this simple signal. 
Graphically, of course, [ ]nδ  is a lonely lollypop at the origin: 

 
The discrete-time unit-step function is 

 
1, 0

[ ]
0, 0

n
u n

n
≥⎧

= ⎨ <⎩
 

and again there are no technical issues here. In particular, the value of [0]u  is unity, unlike the 
continuous-time case where we decline to assign an immoveable value to (0)u . Graphically, we 
have 

 
The unit step can be viewed as the running sum of the unit pulse, 
   

[ ] [ ]
n

k
u n kδ

=−∞
= ∑  

Changing summation variable from k to l = n − k gives an alternate expression 

 
0

[ ] [ ]
l

u n n lδ
∞

=
= −∑  

 
This process can be continued to define the unit ramp as the running sum of the unit step, 
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though there is a little adjustment involved in the upper limit of the sum, since [0] 1u = and 
[0] 0r = : 

1 , 0
[ ] [ ]

0, 0

n

k

n n
r n u k

n

−

=−∞

≥⎧
= = ⎨ <⎩

∑  

We will have no reason to pursue further iterations of running sums. One reason is that simple 
discrete-time signals can be written as sums of amplitude scaled and time shifted unit pulses, and 
there is little need to write signals in terms of steps, ramps, and so on.  
 
Discrete-time singularity signals also have sifting and multiplication properties similar to the 
continuous-time case, though no “generalized” interpretations are needed. It is straightforward to 
verify that 

 [ ] [ ] [ ]o o
n

x n n n x nδ
∞

=−∞
− =∑  

which is analogous to the continuous-time sift 

 ( ) ( ) ( )o ox t t t dt x tδ
∞

−∞
− =∫  

Also, 
 [ ] [ ] [ ] [ ]o o ox n n n x n n nδ δ− = −  
is a discrete-time version of the multiplication rule 
 ( ) ( ) ( ) ( )o o ox t t t x t t tδ δ− = −  
However, unlike the continuous-time case, the time-scaled unit pulse, [ ]anδ , where a is a 
nonzero integer, is identical to [ ]nδ , as is easily verified. 
 
Exercises 
 
1.  Determine if the following signals are periodic, and if so compute the fundamental period. 

(a) 
20

3[ ] j nx n e
π

=  

(b) 44[ ] j nj nx n e e
ππ −

= −  

(c) 
7
3[ ] 3 j nx n e=  

(d) 
4
5[ ] 1 j nx n e π

= +  

(e) 
5 3
7 4[ ] j n j nx n e eπ π−

= +  
 

2.  Consider the signal 1 21 2[ ] j n j nx n c e c eω ω= +  where both frequencies are rational multiples 
of 2π ,  
 1 1 1 2 2 2( / )2 , ( / )2m N m Nω π ω π= =  
Suppose that N  is a positive integer such that 
 1 1 2 2N k N k N= =  
for some integers 1 2,k k . Show that [ ]x n  has period N . (Typically 1 2N N N< , as used in the 
theorem in Section 3.1.) 
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3.  Simplify the following expressions and sketch the signal. 

 (a) [ ] 3 [ 2] [ 1]cos( )
n

k
x n k n nδ δ π

=−∞
= − + +∑  

(b) 3[ ] 4 [ ] k

k
x n n k eδ

∞

=−∞
= −∑  

(c) [ ] [ 3] [ 5] 3 [ ]
n

k
x n r n n n kδ δ

=−∞
= − − + −∑  

(d)  [ ] 3[ ] cos( ) [ ] [ 1] [ ] [ 3]
n

k
x n n n n n u kπ δ δ δ

=−∞
= − − − + −∑  
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Notes for Signals and Systems 

 
4.1 Introduction to Systems 
 
A continuous-time system produces a new continuous-time signal (the output signal) from a 
provided continuous-time signal (the input signal). Attempting a formal definition of a system is a 
tedious exercise in avoiding circularity, so we will abandon precise articulation and rely on the 
intuition that develops from examples. We represent a system “S” with input signal ( )x t  and 
output signal ( )y t  by a box labeled as shown below. 

 
Since a system maps signals into signals, the output signal at any time t can depend on the input 
signal values at all times. We use the mathematical notation 
 ( ) ( )( )y t S x t=  
to emphasize this fact.  
 
Remark  There are many notations for a system in the literature. For example, some try to 
emphasize that a system maps signals into signals by using square brackets,   
 ( ) [ ( )]y t S x t=  
Perhaps this continues to tempt the interpretation that, for example, (0) [ (0)]y S x= , i.e., 

(0)y depends only on (0)x . But, the notation is designed to emphasize that for the input signal 
“x” the output signal is “S(x),” and the value of this output signal at, say t = 0, is y(0) = S(x)(0). 
 
Example  The running integral is an example of a system. A physical interpretation is a capacitor 
with input signal the current ( )x t  through the capacitor, and output signal the voltage ( )y t across 
the capacitor. Then we have, assuming unit capacitance, 

 ( ) ( )
t

y t x dτ τ
−∞

= ∫  

In this case, the output at any time 1t  depends, on input values for all 1t t≤ . Specifically, at any 
time 1t , 1( )y t  is the accumulated net area under ( )x t   for 1t t−∞ < ≤ . 
 
In the discrete-time case, we use an entirely similar notation, writing [ ] ( )[ ]y n S x n=  and 
representing a system by the diagram shown below. 

 
 
4.2 System Properties 
 
The discussion of properties of systems will be a bit tentative at this point, in part because the 
notion of a system is so general that it is difficult to include all the details, and in part because the 
mathematical description of a system might presume certain properties of allowable input signals. 
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For example, the input signal to a running-integrator system must be sufficiently well behaved 
that the integral is defined. We can be considerably more precise when we consider specific 
classes of systems that admit particular types of mathematical descriptions. In the interim the 
intent is mainly to establish some intuition concerning properties of systems in general. 
 
We proceed with a list of properties, phrased in the continuous-time case. 
 
• Causal System A system is causal if the output signal value at any time t depends  

only on input signal values for times no larger than t. Examples of causal systems are 

 3( ) 3 ( 2), ( ) ( ) , ( ) ( )
t

y t x t y t x d y t x tτ τ
−∞

= − = =∫  

Examples of systems that are not causal are 

 
1

( ) (2), ( ) 3 ( 2), ( ) ( )
t

y t x y t x t y t x dτ τ
+

−∞
= = + = ∫  

 
• Memoryless System  A system is memoryless if the output value at any time t  

depends only on the input signal value at that same time, t. A memoryless system is always 
causal, though the reverse is, of course, untrue. Examples of memoryless systems are 

 2 ( )( ) 2 ( ), ( ) ( ), ( ) x ty t x t y t x t y t te= = =  
 
• Time-Invariant System  A system is time invariant if for every input signal x(t)  

and corresponding output signal y(t) the following property holds. Given any constant, ot , the 
input signal ( ) ( )ox t x t t= −�  yields the output signal ( ) ( )oy t y t t= −� . This is sometimes called 
“shift invariance,” since any time shift of an input signal results in the exact same shift of the 
output signal. Examples of time-invariant systems are 

 ( ) sin( ( )), ( ) ( ) , ( ) 3 ( 2)
t

y t x t y t x d y t x tτ τ
−∞

= = = −∫  

Examples of systems that are not time invariant are 

 ( ) sin( ) ( ), ( ) ( )
t

y t t x t y t x dτ τ τ
−∞

= = ∫  

 
To check if a system is time invariant requires application of the defining condition. For example, 
for 

 ( ) ( )
t

y t x dτ τ τ
−∞

= ∫  

we consider the input signal ( ) ( )ox t x t t= −� , where ot  is any constant. The corresponding 
response computation begins with 

 ( ) ( ) ( )
t t

oy t x d x t dτ τ τ τ τ τ
−∞ −∞

= = −∫ ∫� �  

To compare this to ( )oy t t− , it is convenient to change the variable of integration to otσ τ= − . 
This gives 
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 ( ) ( ) ( )
ot t

oy t t x dσ σ σ
−

−∞
= +∫�  

which is not the same as 

 ( ) ( )
ot t

oy t t x dτ τ τ
−

−∞
− = ∫  

Therefore the system is not time invariant. 
 
• Linear System A system is linear if for every pair of input signals 1 2( ), ( )x t x t ,  

with corresponding output signals 1 2( ), ( )y t y t , the following holds. For every constant b, the 
response to the input signal 1 2( ) ( ) ( )x t bx t x t= +  is 1 2( ) ( ) ( )y t by t y t= + . (This is more concise 
than popular two-part definitions of linearity in the literature. Taking b = 1 yields the additivity 
requirement that the response to 1 2( ) ( ) ( )x t x t x t= +  be 1 2( ) ( ) ( )y t y t y t= + .  And taking 

2 1( ) ( )x t x t=  gives the homogeniety requirement that the response to 1( ) ( 1) ( )x t b x t= +  should 
be 1( ) ( 1) ( )y t b y t= + for any constant b. Examples of linear systems are 

 ( ) ( ), ( ) 3 ( 2), ( ) ( )
t

ty t e x t y t x t y t x dτ τ
−∞

= = − = ∫  

Examples of systems that are “nonlinear” are 

 2( ) ( ) , ( ) 1 ( ), ( ) cos( ( ))
t

y t x d y t x t y t x tσ σ
−∞

= = + =∫  

Remark  It should be noted that for a linear system the response to the zero input is the zero 
output signal. To see this, simply take 1 2( ) ( )x t x t=  (so that 1 2( ) ( )y t y t= ) and 1b = −  in the 
definition of linearity. 
 
• Stable System Recalling the definition of a bounded signal in Section1.6, a  

system is stable (or bounded-input, bounded-output stable) if every bounded input signal yields a 
bounded output signal. In detail, for any input signal x(t) such that |x(t)| < M  for all t, where  M is 
a constant, there is aother constant P such that the corresponding output signal satisfies |y(t)| < P 
for all t. Examples of stable systems are 

 ( )
2
( 2)( ) , ( ) , ( ) sin( ) ( )

1
x t x ty t e y t y t t x t

t
−

= = =
+

 

Examples of “unstable” systems are 

 ( ) ( ), ( ) ( )
t

ty t e x t y t x dτ τ
−∞

= = ∫  

• Invertible System A system is invertible if the input signal can be uniquely  
determined from knowledge of the output signal. Examples of invertible systems are  

 3( ) ( ), ( ) 3 ( 2) 4y t x t y t x t t= = − +  
The thoughtful reader will be justifiably nervous about this definition. Invertibility of a 
mathematical operation requires two features: the operation must be one-to-one and also onto. 
Since we have not established a class of input signals that we consider for systems, or a 
corresponding class of output signals, the issue of “onto” is left vague. And since we have 
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decided to ignore or reassign values of a signal at isolated points in time for reasons of simplicity 
or convenience, even the issue of “one-to-one” is unsettled.  
 
Determining invertibility of a given system can be quite difficult. Perhaps the easiest situation is 
showing that a system is not invertible by exhibiting two legitimately different input signals that 

yield the same output signal. For example, 2( ) ( )y t x t=  is not invertible because constant input 
signals of ( ) 1x t =  and ( ) 1x t = − , for all t,  yield identical output signals. As another example, 
the system 

 ( ) ( )dy t x t
dt

=  

is not invertible since ( ) 1 ( )x t x t= +�  yields the same output signal as x(t). As a final example, in 
a benign setting the running-integrator system 

 ( ) ( )
t

y t x dτ τ
−∞

= ∫  

is invertible by the fundamental theorem of calculus: 

 ( ) ( )
td x d x t

dt
τ τ

−∞
=∫  

But the fact remains that technicalities are required for this conclusion. If two input signals differ 
only at isolated points in time, the output signals will be identical, and thus the system is not 
invertible if we consider such input signals to be legitimately different. 
 
All of these properties translate easily to discrete-time systems. Little more is required than to 
replace parentheses by square brackets and t by n. But regardless of the time domain, it is 
important to note that these are input-output properties of systems. In particular, nothing is being 
stated about the internal workings of the system, everything is stated in terms of input signals and 
corresponding output signals.  
 
Finally it is worthwhile to think of how you would ascertain whether a given physical system, for 
which you do not have a mathematical description, has each of the properties we consider. That 
is, what input signals would you apply, what measurements of the response would you take, and 
what use you would make of these measurements.  
 
4.3 Interconnections of Systems – Block Diagrams 

 
Engineers often connect systems, sometimes called subsystems in this context, together to form 
new systems. An immediate question is how to mathematically describe the input-output behavior 
of the overall system in terms of the subsystem descriptions. Of course these connections 
correspond to mathematical operations on the functions describing the subsystems, and there are a 
few main cases to consider. 
 
We begin with the two subsystems shown below as “blocks” ready for connection, 

   
and consider the following types of connections.  
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• Additive parallel connection 

 

 
In this block diagram, as a particular example, the circular element shown represents the signed 
addition of the output signals of the two subsystems. This connection describes a new system 
with output given by 
 1 2 1 2( ) ( )( ) ( )( ) ( )( )( )y t S x t S x t S S x t= − = −  
 
 Thus the overall system is represented by the function 1 2 1 2( )( ) ( ) ( )S S x S x S x− = − ,  and we 
can represent it as a single block: 

 
 
• Series or cascade connection  

 
The mathematical description of the overall system corresponds to the composition of the 
functions describing the subsystems, according to 
 2 1( ) ( ( ))( )y t S S x t=  
 
Thus the overall system can be represented as the block diagram 
 

 
• Feedback connection 
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The feedback connection is more complicated than the others, but extremely important. To 
attempt development of a mathematical description of the system described by this connection, 
we begin by noting that the output signal is the response of the system 1S  with input signal that is 
the output of the summer. That is, input signal to 1S  is 2( ) ( )( )x t S y t− . Therefore, 
 1 2( ) ( ( ))( )y t S x S y t= −  
and we see that the feedback connection yields an equation involving both the input and output 
signals. Unfortunately, without further mathematical assumptions on the two functions 1S  and 

2S , we cannot solve this equation for y(t) in terms of x(t) to obtain a mathematical description of 
the overall system of the form 
 ( ) ( )( )y t S x t=  
This indicates the sophisticated and subtle nature of the feedback connection of systems, and we 
return to this issue in the sequel. 
 
Remark In our discussion of interconnections of systems, an underlying assumption is that the 
behavior of the various subsystems is not altered by the connection to other subsystems. In 
electrical engineering, this is often expressed as “there are no loading effects.” This assumption is 
not always satisfied in practice. A second assumption is that domain and range conditions are 
met. For example, in the cascade connection, the output of 1S  must satisfy any assumption 

required on the input to 2S . If the system 2S  takes the square root of the input signal, 

2( )( ) ( )S x t x t= , then the output of 1S  must never become negative. 
 
The basic interconnections of discrete-time systems are completely similar to the continuous-time 
case. 
 
Exercises 
 
1.  Determine if each of the following systems is causal, memoryless, time invariant, linear, or 
stable. Justify your answer. 

(a) 2( ) 2 ( ) 3 ( 1)y t x t x t= + −  

(b) 2( ) cos ( ) ( )y t t x t=  

(c) 
1

( ) 2 ( )
t

y t x t dτ τ
−

−∞
= + −∫  

(d) ( ) ( )
t

ty t e e x dτ τ τ−

−∞
= ∫  

(e)  ( ) (2 )
t

y t x dτ τ
−∞

= ∫  

(f)  ( ) ( )y t x t= −  
 
(g)  ( ) (3 )y t x t=  

(h)   ( ) 2( ) ( )
t

ty t e x dσ σ σ−

−∞
= ∫  
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(i)    ( ) ( ) ( )
t

y t x t e x dτ τ τ−

−∞
= ∫  

 
(j)    ( ) 3 ( 1) 4y t x t= + −  

(k)    
0

( ) 3 ( ) 3 ( )
t

y t x t x dσ σ= − + ∫  

(l)      ( ) 3 ( ) | ( 3) |y t x t x t= − −  
 
2.  Determine if each of the following systems is causal, memoryless, time invariant, linear, or 
stable. Justify your answer. 
(a) [ ] 3 [ ] [ 1]y n x n x n= −  

(b)  
2

2
[ ] [ ]

n

k n
y n x k

+

= −
= ∑  

(c)  [ ] 4 [3 2]y n x n= −  

(d)  [ ] [ ] [ ]
n k

k
y n e u k x n k

=−∞
= −∑  

(e)   
3

[ ] cos( [ ])
n

k n
y n x k

= −
= ∑  

 
 
3.  Determine if each of the following systems is invertible. If not, specify two different input 
signals that yield the same output. If so, give an expression for the inverse system. 
(a) ( ) cos[ ( )]y t x t=  

(b)  3( ) ( 4)y t x t= −  
 
4.  Determine if each of the following systems is invertible. If not, specify two different input 
signals that yield the same output. If so, give an expression for the inverse system. 

(a) [ ] [ ]
n

k
y n x k

=−∞
= ∑  

(b)  [ ] ( 1) [ ]y n n x n= −  
 
(c)  [ ] [ ] [ 1]y n x n x n= − −  
 
5.  For each pair of systems 1 2,S S  specified below, give a mathematical description of the 
cascade connection 2 1( )S S . 

(a) 2
1 1 2 2[ ] [ 2], [ ] 3 [ 2]y n x n y n x n= − = +  

(b)  1 1 2 2[ ] [ ] [ ], [ ] 2 [ ] [ ]
n n

k k
y n k x n k y n n k x kδ δ

=−∞ =−∞
= − = −∑ ∑  
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Notes for Signals and Systems 
 

5.1 DT LTI Systems and Convolution 
 
Discrete-time systems that are linear and time invariant often are referred to as LTI systems. LTI 
systems comprise a very important class of systems, and they can be described by a standard 
mathematical formalism. To each LTI system there corresponds a signal h[n] such that the input-
output behavior of the system is described by 

 [ ] [ ] [ ]
k

y n x k h n k
∞

=−∞
= −∑  

This expression is called the convolution sum representation for LTI systems. In addition, the 
sifting property easily shows that h[n] is the response of the system to a unit-pulse input signal. 
That is, for x[n] = δ[n], 

 [ ] [ ] [ ] [ ] [ ] [ ]
k k

y n x k h n k k h n k h nδ
∞ ∞

=−∞ =−∞
= − = − =∑ ∑  

 
 Thus the input-output behavior of a discrete-time, linear, time-invariant system is completely 
described by the unit-pulse response of the system. If  [ ]h n  is known, then the response to any 
input can be computed from the convolution sum. 
 
Derivation  It is straightforward to show that a system described by the convolution sum, with 
specified h[n], is a linear and time-invariant system. Linearity is clear, and to show time 
invariance, consider a shifted input signal ˆ[ ] [ ]ox n x n n= − . The system response to this input 
signal is given by 

 

ˆ ˆ[ ] [ ] [ ]

[ ] [ ]

k

o
k

y n x k h n k

x k n h n k

∞

=−∞
∞

=−∞

= −

= − −

∑

∑
 

To rewrite this expression, change the summation index from k to l = k − N, to obtain 

 
ˆ[ ] [ ] [ ]

[ ]

o
l

o

y n x l h n n l

y n n

∞

=−∞
= − −

= −

∑
 

This establishes time invariance. 
 
It is less straightforward to show that essentially any LTI system can be represented by the 
convolution sum. But the convolution representation for linear, time-invariant systems can be 
developed by adopting a particular representation for the input signal and then enforcing the 
properties of linearity and time invariance on the corresponding response. The details are as 
follows. 
 
Often we will represent a given signal as a linear combination of “basis” signals that have certain 
desirable properties for the purpose at hand. To develop a representation for discrete-time LTI 
systems, it is convenient to represent the input signal as a linear combination of shifted unit pulse 
signals: [ ], [ 1], [ 1], [ 2],n n n nδ δ δ δ− + − … . Indeed it is easy to verify the expression 
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 [ ] [ ] [ ]
k

x n x k n kδ
∞

=−∞
= −∑  

Here the coefficient of the signal [ ]n kδ −  in the linear combination is the value x[k]. Thus, for 
example, if n = 3, then the right side is evaluated by the sifting property to verify 

 [ ] [3 ] [3]
k

x k k xδ
∞

=−∞
− =∑  

We can use this signal representation to derive an LTI system representation as follows. The 
response of an LTI system to a unit pulse input, x[n] = δ[n], is given the special notation  y[n] = 
h[n]. Then by time invariance, the response to a k−shifted unit pulse, [ ] [ ]x n n kδ= −�  is 

[ ] [ ]y n h n k= −� . Furthermore, by linearity, the response to a linear combination of shifted unit 
pulses is the linear combination of the responses to the shifted unit pulses. That is, the response to 
x[n], as written above, is 

 [ ] [ ] [ ]
k

y n x k h n k
∞

=−∞
= −∑  

Thus we have arrived at the convolution sum representation for LTI systems. The convolution 
representation follows directly from linearity and time invariance – no other properties of the 
system are assumed (though there are some convergence issues that we have ignored). An 
alternate expression for the convolution sum is obtained by changing the summation variable 
from k to l = n − k: 

 [ ] [ ] [ ]
k

y n h l x n l
∞

=−∞
= −∑  

It is clear from the convolution representation that if we know the unit-pulse response of an LTI 
system, then we can compute the response to any other input signal by evaluating the convolution 
sum. Indeed, we specifically label LTI systems with the unit-pulse response in drawing block 
diagrams, as shown below 
 

 
The demonstration below can help with visualizing and understanding the convolution 
representation.  
 

Joy of Convolution (Discrete Time) 
 
 
Response Computation 

 
Evaluation of the convolution expression, given x[n] and h[n], is not as simple as might be 
expected because it is actually a collection of summations, over the index k, that can take 
different forms for different values of n. There are several strategies that can be used for 
evaluation, and the main ones are reviewed below. 
 
• Analytic evaluation When x[n] and h[n] have simple, neat analytical expressions,  

and the character of the summation doesn’t change in complicated ways as n changes, sometimes 
y[n] can be computed analytically. 

http://www.jhu.edu/~signals/discreteconv2/index.html
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Example Suppose the unit pulse response of an LTI system is a unit ramp, 
 [ ] [ ] [ ]h n r n nu n= =  
To compute the response of this system to a unit-step input, write the convolution representation 
as  

 

0

[ ] [ ] [ ] [ ]( ) [ ]

( ) [ ]

k k

k

y n x k h n k u k n k u n k

n k u n k

∞ ∞

=−∞ =−∞
∞

=

= − = − −

= − −

∑ ∑

∑
 

Note that in the second line the unit-step u[k] in the summand is removed, but the lower limit of 
the sum is raised to zero, and this is valid regardless of the value of n. Now, if n < 0, then the 
argument of the step function in the summand is negative for every k ≥ 0. Therefore y[n] = 0 for n 
< 0. But, for n ≥ 0, we can remove the step [ ]u n k−  from the summand if we lower the upper 
limit to n. Then 

 
0

[ ] ( ) ( 1) 2 1 0
n

k
y n n k n n

=
= − = + − + + + +∑ "  

Using the very old trick of pairing the n with the 0 , the ( 1)n − with the 1, and so on, we see that 
each pair sums to n. Counting the number of pairs for even n  and for odd n  gives 
 

 
( 1) , 0

[ ] 2
0, 0

n n n
y n

n

+⎧ ≥⎪= ⎨
⎪ <⎩

 

or, more compactly, 
( 1)[ ] [ ]

2
n ny n u n+

=  

 
 Remark   Because of the prevalence of exponential signals, the following geometric-series 
formulas for discrete-time signal calculations are useful for analytic evaluation of convolution. 
For any complex number 1α ≠ , 

 
1

0

1
1

NN n

n

αα
α

−

=

−
=

−
∑  

For any complex number satisfying | | 1α < , 

 
0

1
1

n

n
α

α

∞

=
=

−
∑  

 
 
 
• Graphical method  This method is useful for more complicated cases. We  

simply plot the two signals, x[k] and h[n − k], in the summand versus k for the value of n of 
interest, then perform “lollypop-by-lollypop” multiplication and plot the summand, and then add 
up the lollypop values to obtain y[n].  
 
Example To rework the previous example by the graphical method, writing 
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 [ ] [ ] [ ]
k

y n x k h n k
∞

=−∞
= −∑  

first plot h[k] as shown, 

 
Then, for the value of n of interest, flip and shift. For n = 3, we plot h[3 − k] and, 
to facilitate the multiplication, plot x[k] immediately below: 
 

 

 
 

Then lollypop-by-lollypop multiplication gives a plot of the summand, 

 
Adding up the lollypop values gives 
  

[3] 3 2 1 6y = + + =  
To compute, say, y[4], slide the plot of h[3 − k] one sample to the right to obtain a plot of h[4 − k] 
and repeat the multiplication with x[k] and addition. In simple cases such as this, there is little 
need to redraw because the pattern is clear. Even in complicated cases, it is often easy to identify 
ranges of n where y[n] = 0, because the plots of x[k] and h[n − k] are “non-overlapping.” In the 
example, this clearly holds for n < 0. 
 
• LTI cleverness  The third method makes use of the properties of linearity and  

time invariance, and is well suited for the case where x[n] has only a few nonzero values. Indeed, 
it is simply a specialization of the approach we took to the derivation of the convolution sum. 
 
Example With an arbitrary h[n], suppose that the input signal comprises three nonzero lollypops, 
and can be written as 
 [ ] [ ] 2 [ 1] 3 [ 3]x n n n nδ δ δ= + − − −  
Then linearity and time invariance dictate that 
 [ ] [ ] 2 [ 1] 3 [ 3]y n h n h n h n= + − − −  
Depending on the form of the unit-pulse response, this can be evaluated analytically, or by 
graphical addition of plots of the unit-pulse response and its shifts and amplitude scales. 
 
Remark The convolution operation can explode – fail to be well defined – for particular choices 
of input signal and unit-pulse response. For example, with x[n] = h[n] = 1, for all n, there is no 
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value of n for which y[n] is defined, because the convolution sum is infinite for every n. In our 
derivation, we did not worry about convergence of the summation. This again is a consequence of 
our decision not to be precise about classes of allowable signals, or, more mathematically, 
domains and ranges. The diligent student must always be on the look out for such anomalies. 
Furthermore, there are LTI systems that cannot be described by a convolution sum, though these 
are more in the nature of mathematical oddities than engineering legitimacies. In any case, this is 
the reason we say that “essentially” any LTI system can be described by the convolution sum. 
 
5.2 Properties of Convolution – Interconnections of DT LTI Systems 
 
The convolution of two signals yields a signal, and this obviously is a mathematical operation – a 
sort of “weird multiplication” of signals. This mathematical operation obeys certain algebraic 
properties, and these properties can be interpreted as properties of systems and their 
interconnections. 
 
To simplify matters, we adopt a shorthand “star” notation for convolution and write 

 [ ] ( )[ ] [ ] [ ]
k

y n x h n x k h n k
∞

=−∞
= ∗ = −∑  

Note that since, for any n, the value of y[n] in general depends on all values of the signals x[n] 
and h[n], we use the more general operator notation style, In particular, we do not write 

[ ] [ ] [ ]y n x n h n= ∗  because of the temptation to conclude that, for example, [2] [2] [2]y x h= ∗ . 
 
Algebraic properties of the “star operation” are discussed below.  
  
• Commutativity   Convolution is commutative. That is, ( )[ ] ( )[ ]x h n h x n∗ = ∗ , or, in  

complete detail, 

 [ ] [ ] [ ] [ ] ,
k k

x k h n k h k x n k for all n
∞ ∞

=−∞ =−∞
− = −∑ ∑  

The proof of this involves the first standard rule for proofs in this course: Use change of variable 
of summation. Beginning with the left side, replace the summation variable k by q = n − k. Then 
as ,k q→±∞ → ∞∓ , but (unlike integration) it does not matter whether we sum from left-to-
right or right-to-left. Thus 

 

( )[ ] [ ] [ ] [ ] [ ]

[ ] [ ] ( )[ ]

k q

q

x h n x k h n k x n q h q

h q x n q h x n

∞ −∞

=−∞ =∞

∞

=−∞

∗ = − = −

= − = ∗

∑ ∑

∑
 

 
Using this result, there are two different ways to describe in words the role of the unit-pulse 
response values in the input-output behavior of an LTI system. The value of h[n − k] determines 

how the thn  value of the output signal depends on the thk  value of the input signal. Or, the value 
of h[q] determines how the value of y[n] depends on the value of  x[n − q]. 
 
• Associativity   Convolution is associative. That is, 

 
 1 2 1 2( ( ))[ ] (( ) )[ ]x h h n x h h n∗ ∗ = ∗ ∗  
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The proof of this property is a messy exercise in manipulating summations, and it is omitted. 
 
• Distributivity   Convolution is distributive (with respect to addition). That is, 

 1 2 1 2( ( ))[ ] ( )[ ] ( )[ ]x h h n x h n x h n∗ + = ∗ + ∗  
 
Of course, distributivity is a restatement of part of the linearity property of LTI systems and so no 
proof is needed. The remaining part of the linearity condition is written in the new notation as 
follows. For any constant b, 

(( ) )[ ] ( )[ ]bx h n b x h n∗ = ∗  
 

• Shift Property   This is simply a restatement of the time-invariance property, though the 
notation makes it a bit awkward. For any integer on  , if ˆ[ ] [ ]ox n x n n= − , then 

 ( ) ( )ˆ [ ] [ ]ox h n x h n n∗ = ∗ −  
 
• Identity   It is worth noting that the “star” operation has the unit pulse as an  

identity element. Namely, 
 ( )[ ] [ ]x n x nδ∗ =  
This can be interpreted in system-theoretic terms as the fact that the identity system, [ ] [ ]y n x n=  
has the unit-pulse response [ ] [ ]h n nδ= . Also we can write ( )[ ] [ ]n nδ δ δ∗ = , an expression 
that says nothing more than: The unit pulse is the unit-pulse response of the system whose unit-
pulse response is a unit pulse. 
 
These algebraic properties of the mathematical operation of convolution lead directly to methods 
for describing the input-output behavior of interconnections of LTI systems. Of course we use 
block diagram representations to describe interconnections, but for LTI systems we label each 
block with the corresponding unit-pulse response. For example, 
 

 
 
Distributivity implies that the interconnection below 
 

 
 
has the same input-output behavior as the system 
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Commutativity and associativity imply that the interconnections 
 

 
 
both have the same input-output behavior as the system 
 

 
 
Finally, we analyze the feedback connection 
 

 
 
as follows, in an attempt to obtain a description for its input-output behavior. With the 
intermediate signal [ ]e n  labeled as shown, we can write 
 [ ] ( )[ ]y n g e n= ∗  
and 
 [ ] [ ] ( )[ ]e n x n h y n= − ∗  
as descriptions of the interconnection. Substituting the second into the first gives 
 [ ] ( )[ ] ( )[ ]y n g x n g h y n= ∗ − ∗ ∗  
or, writing [ ] ( )[ ]y n y nδ= ∗  we get 
 ( )( ) [ ] ( )[ ]g h y n g x nδ − ∗ ∗ = ∗  

However, we cannot solve for [ ]y n  on the left side unless we know that the LTI system with 
unit-pulse response ( )[ ]g h nδ − ∗  is invertible. Let’s stop here, and return to the problem of 
describing the feedback connection after developing more tools. 
 
But for systems without feedback, the algebraic rules for the convolution operation provide an 
easy formalism for simplifying block diagrams. Typically it is easiest to start at the output signal 
and write descriptions of the intermediate signals (labeled if needed) while working back toward 
the input signal. 
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Example  For the interconnected system shown below, there is no need to label internal signals as 
the structure is reasonably transparent. 
 

 
The output signal can be written as 

 
( )

4 2 1 3 1

4 2 1 3 1

[ ] ( )[ ] ( )[ ] ( )[ ]
( ) [ ]

y n h x n h h x n h h x n
h h h h h x n

= ∗ + ∗ ∗ − ∗ ∗

= + ∗ − ∗ ∗
 

Thus the input-output behavior of the system is identical to the input-output behavior of the 
system 

 
 

 
5.3 DT LTI System Properties 
 
Since the input-output behavior of a discrete-time LTI system is completely characterized by its 
unit-pulse response, h[n], via the convolution expression 

 [ ] [ ] [ ] [ ] [ ]
k k

y n x k h n k h k x n k
∞ ∞

=−∞ =−∞
= − = −∑ ∑  

the input-output properties of the system can be characterized very precisely in terms of 
properties of  h[n].  
 
• Causal System   An LTI system is causal if and only if h[n] = 0 for n < 0, that is,  

if and only if h[n] is right sided.  
 
The proof of this is quite easy from the convolution expression. If the unit-pulse response is right 
sided, then the convolution expression simplifies to 

 
0

[ ] [ ] [ ]
k

y n h k x n k
∞

=
= −∑  

and, at any value of n, the value of y[n] depends only on the current and earlier values of the input 
signal. If the unit-pulse response is not right sided, then it is easy to see that the value of y[n] at a 
particular n depends on future values of the input signal. 
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• Memoryless System   An LTI system is memoryless if and only if h[n] = cδ[n], for  
some constant c. Again, a proof is quite easy to argue from the convolution expression. 
 
• Stable System   An LTI system is (bounded-input, bounded-output) stable if and  

only if the unit-pulse response is absolutely summable. That is, 

 | [ ] |
n

h n
∞

=−∞
∑  

is finite.  
 
To prove this, suppose x[n] is a bounded input, that is, there is a constant M such that | [ ] |x n M≤  
for all n. Then the absolute value of the output signal satisfies 

 

| [ ] | | [ ] [ ] | | [ ] || [ ] |

| [ ] |

k k

k

y n h k x n k h k x n k

M h k

∞ ∞

=−∞ =−∞
∞

=−∞

= − ≤ −

≤

∑ ∑

∑
 

Therefore, if the absolute summability condition holds, the output signal is bounded for any 
bounded input signal, and we have shown that the system is stable. 
 
To prove that stability of the system implies absolute summability requires considerable 
cleverness. Consider the input x[n] defined by 

 
1, [ ] 0

[ ]
1, [ ] 0

h n
x n

h n
≥⎧

− = ⎨− <⎩
 

Clearly [ ]x n  is a bounded input signal, and the corresponding response y[n] at n = 0 is 

 [0] [ ] [ ] | [ ] |
k k

y h k x k h k
∞ ∞

=−∞ =−∞
= − =∑ ∑  

Since the system is stable, y[n] is bounded, and therefore y[0] is bounded, and therefore the unit-
pulse response is absolutely summable. 
 
Example  The system with unit-pulse response 

 [ ] (0.5) [ ]nh n u n=  
is a stable system since 

 
0

1| [ ] | (0.5) 2
1 0.5

n

n n
h n

∞ ∞

=−∞ =
= = =

−
∑ ∑  

On the other hand, the system with unit-pulse response 
 [ ] [ 1]h n u n= −  
is unstable. 
 
• Invertible System   There is no simple characterization of invertibility in terms of  

the the unit-pulse response. However, in particular examples it is sometimes possible to compute 
the unit-pulse response of an inverse system, [ ]Ih n , from the requirement 
 ( )[ ] [ ]Ih h n nδ∗ =  
This condition expresses the natural requirement that a system in cascade with its inverse should 
be the identity system. 
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Example  To compute an inverse of the running summer, that is, the LTI system with unit pulse 
response [ ] [ ]h n u n= , we must find [ ]Ih n  that satisfies 

 [ ] [ ] [ ]I
k

u k h n k nδ
∞

=−∞
− =∑  

Simplifying the summation gives 

 
0

[ ] [ ]I
k

h n k nδ
∞

=
− =∑  

It is clear that we should take [ ] 0Ih n = , for 0n < . Using this result, for 0n =  the requirement 
is 

 
0

[ ] [0] 1I I
k

h k h
∞

=
− = =∑  

For 1n =  the requirement is 

 
0

[1 ] [1] [0] 0I I I
k

h k h h
∞

=
− = + =∑  

which gives [1] 1Ih = − . Continuing for further values of n, it is clear that the inverse-system 
requirement is satisfied by taking all remaining values of [ ]Ih n  to be zero. Thus the inverse 
system has the unit pulse response 
 [ ] [ ] [ 1]Ih n n nδ δ= − −  
Of course, it is easy to see that in general the output of this inverse system is the first difference of 
the input signal. 
 
5.4 Response to Singularity Signals  
 
The response of a DT LTI system to the basic singularity signals is quite easy to compute. If the 
system is described by 

 [ ] [ ] [ ]
k

y n x k h n k
∞

=−∞
= −∑  

then the unit pulse response is simply [ ] [ ]y n h n= . If the input signal is a unit step, [ ] [ ]x n u n= , 
then 

 0
[ ] [ ] [ ] [ ]

[ ]

k k
n

l

y n u k h n k h n k

h l

∞ ∞

=−∞ =

=−∞

= − = −

=

∑ ∑

∑
 

In words, the unit-step response is the running sum of the unit-pulse response. Of course, if the 
system is causal, that is, the unit-pulse response is right sided, then 
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0

0

[ ] , 0
[ ]

0 , 0

[ ] [ ]

n

k

n

k

h k n
y n

n

h k u n

=

=

⎧
≥⎪= ⎨

⎪ <⎩
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑

∑

 

 
For input signals that have only a small number of nonzero values, the basic approach of “LTI 
cleverness” can be applied to evaluate the response. That is, if the input signal can be written as 
 
 0 0 1 1[ ] [ ] [ ] [ ] [ ] [ ] [ ]m mx n x n n n x n n n x n n nδ δ δ= − + − + + −"  
 
then the response is given by 
 
 0 0 1 1[ ] [ ] [ ] [ ] [ ] [ ] [ ]m my n x n h n n x n y n n x n y n n= − + − + + −"  
 
5.5 Response to Exponentials (Eigenfunction Properties) 
 
For important classes of LTI systems, the responses to certain types of exponential input signals 
have particularly simple forms. These simple forms underlie many approaches to the analysis of 
LTI systems, and we consider several variants, each of which requires slightly different 
assumptions on the LTI system. For historical reasons in mathematics, an input signal [ ]x n  is 
called an eigenfunction of the system if the corresponding output signal is simply a constant 
multiple of the input signal. (We do permit the constant to be complex, when considering 
complex input signals.) 
 
• Real Eigenfunctions   The response of a causal, stable LTI system to a growing  

exponential input signal is a constant multiple of the exponential, where the constant depends on 
the exponent. To work this out in detail, suppose the LTI system 

 [ ] [ ] [ ]
k

y n h k x n k
∞

=−∞
= −∑  

is causal and stable, that is,  h[n] is right-sided and absolutely summable. Furthermore, suppose 
the input signal is the real exponential signal 

 [ ] ,onx n e nσ= −∞ < < ∞  
where 0oσ ≥ . Then the response computation becomes 

 ( )[ ] [ ] [ ]o o on k k n

k k
y n h k e h k e eσ σ σ∞ ∞− −

=−∞ =−∞

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑ ∑  

Using the causality and stability assumptions on the system, the assumption that 0oσ ≥ , and 
basic properties of absolute values, 



 61

 

0

0

0

[ ] [ ]

| [ ] |

| [ ] |

o o

o

k k

k k

k

k

k

h k e h k e

h k e

h k

σ σ

σ

∞ ∞− −

=−∞ =
∞ −

=
∞

=

=

≤

≤ < ∞

∑ ∑

∑

∑

 

That is, the summation converges to a real number, which we write as ( )oH σ to show the 
dependence of the real number on the value chosen for oσ . Thus the output signal is a scalar 
multiple of the input signal, 

 [ ] ( ) on
oy n H eσσ=  

where 

 
0

( ) [ ] ok
o

k
H h k e σσ

∞ −

=
= ∑  

 
Of course the exponential input, which begins as a vanishingly small signal at n →−∞ , grows 
without bound as n increases, as does the response, unless 0oσ =  or ( ) 0oH σ = . 
 
Example  For the LTI system with unit-pulse response 

 [ ] (0.5) [ ]nh n u n=  
given any 0oσ ≥  we can compute 

 1
1 / 20 0

( ) (0.5) ( / 2)o o
o

kk k
o ek k

H e e σ
σ σσ −

∞ ∞− −
−= =

= = =∑ ∑  

 
Therefore the response of the system to the input 

 [ ] ,onx n e nσ= −∞ < < ∞  
is 

 2
2

[ ] o
o

n
e

y n eσ
σ

−−
=  

 
 
It is important to note that only one summation must be evaluated to compute the eigenfunction 
response. Contrast this with the usual convolution, which typically involves a family of 
summations with the nature of the summation changing with the value of n. 
 
• Complex Eigenfunctions   It is mathematically convenient to consider complex  

input signals to LTI systems, though of course the unit-pulse response, h[n], is assumed to be real. 
If a complex input signal is written in rectangular form as 
 [ ] [ ] [ ]R Ix n x n jx n= +  
where, for each n, 
 { } { }[ ] Re [ ] , [ ] Im [ ]R Ix n x n x n x n= =  
then the corresponding, complex output signal is 
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[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

k

R I
k k

y n x k h n k

x k h n k j x k h n k

∞

=−∞
∞ ∞

=−∞ =−∞

= −

= − + −

∑

∑ ∑
 

That is, 

 
{ } { } ( )
{ } { } ( )

Re [ ] Re ( )[ ] [ ] ,

Im [ ] Im ( )[ ] [ ]
R

I

y n x h n x h n

y n x h n x h n

= ∗ = ∗

= ∗ = ∗
 

and so we get two real input-output calculations for a single complex calculation. (We note in 
passing that linearity of an LTI system holds for complex-coefficient linear combinations of 
complex input signals.) 
 
As an important application of this fact, suppose the LTI system is stable, and consider the input 
signal 

 [ ] ,oj nx n e nω= −∞ < < ∞  
where oω  is a real number. The corresponding output signal is 

 ( )[ ] [ ] [ ]o o oj n k j k j n

k k
y n h k e h k e eω ω ω∞ ∞− −

=−∞ =−∞
= =∑ ∑  

Since the system is stable, and | | 1oj ke ω =  for every k, 

 

[ ] | [ ] |

| [ ] |

o oj k j k

k k

k

h k e h k e

h k

ω ω∞ ∞− −

=−∞ =−∞
∞

=−∞

≤

≤

< ∞

∑ ∑

∑  

 
and we have, for any frequency oω , convergence of the sum to a (complex) number that we 
write as ( )oH ω . Then 

 [ ] ( ) oj n
oy n H e ωω=  

where 

 ( ) [ ] oj k
o

k
H h k e ωω

∞ −

=−∞
= ∑  

 
Again, there is not a family of summations (as in convolution, in which different values of n can 
lead to different forms of the sum) to evaluate for this complex input signal, rather there is a 
single summation to evaluate! 
 
Example  If 

 [ ] cos( ) Re{ }oj n
ox n n e ωω= =  

and the system is stable, then 

[ ] Re{ ( ) }oj n
oy n H e ωω=  
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To evaluate this expression, write the complex number ( )oH ω  in polar form as 

 ( )( ) | ( ) | oj H
o oH H e ωω ω= )  

Then 

 
( ( ))[ ] Re{| ( ) | }

| ( ) | cos( ( )}

o oj n H
o

o o o

y n H e
H n H

ω ωω
ω ω ω

+=

= +

)

)
 

That is, the response of a stable system to a cosine input signal is a cosine with the same 
frequency but with amplitude adjustment and phase shift. Another way to write this response 
follows from writing ( )oH ω  in rectangular form, but we leave this as an exercise.  
 
• Steady-State Eigenfunctions Suppose that the system is causal as well as stable,  

and that the input signal is a right-sided complex exponential, 

 [ ] [ ]oj nx n e u nω=  
Then y[n] = 0 for n < 0, and for n ≥ 0, 

 

( )

0

[ ] [ ] [ ]

[ ]

o

o o

j n k

k
n j k j n

k

y n h k e u n k

h k e e

ω

ω ω

∞ −

=−∞

−

=

= −

=

∑

∑
 

As n →∞ , remembering that the unit-pulse response is right sided by causality, and absolutely 
summable by stability, 

 
0 0

[ ] ( ) [ ]o o
n j k j k

o
k k

h k e H h k eω ωω
∞− −

= =
→ =∑ ∑  

and therefore, as n increases, y[n] approaches the “steady-state response” 

 [ ] ( ) oj n
ss oy n H e ωω=  

That is, for large values of n, [ ] [ ]ssy n y n≈  .  This is a “one-sided input, steady-state output” 
version of the eigenfunction property of complex exponentials. Of course a similar property for 
one-sided sine and cosine inputs is implied via the operations of taking real and imaginary parts. 
 
5.6 DT LTI Systems Described by Linear Difference Equations 
 
Systems described by constant-coefficient, linear difference equations are LTI systems. In 
exploring this fact, it is important to keep in mind that our default setting is that all signals are 
defined for −∞ < n < ∞. This brings about significant differences (!) with other treatments of 
difference equations. 
 
Suppose we have a system whose input and output signals are related by 
 [ ] [ 1] [ ] ,y n ay n bx n n+ − = −∞ < < ∞  
where a and b are real constants. This is called a first-order, constant-coefficient, linear 
difference equation. Given an input signal x[n], this can be viewed as an equation that must be 
solved for y[n], and we leave to other courses the argument that for each input signal, [ ]x n , there 
is a unique solution for the output signal, [ ]y n . We simply make the claim that the solution is 

 [ ] ( ) [ ]
n n k

k
y n a bx k−

=−∞
= −∑  
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and verify this solution as follows. Using the assumed y[n], 

 

1 1

1

[ 1] ( ) [ ]

( ) [ ]

n n k

k
n n k

k

ay n a a b x k

a b x k

− − −

=−∞
− −

=−∞

− = −

= − −

∑

∑
 

Therefore 

 
[ ] [ 1] ( ) [ ]

[ ]

n n k

k n
y n ay n a bx k

bx n

−

=
+ − = −

=

∑
 

Of course, the solution can be written as 

 [ ] ( ) [ ] [ ]n k

k
y n a bu n k x k

∞ −

=−∞
= − −∑  

so it is clear that the difference equation describes an LTI system with unit-pulse response 

 [ ] ( ) [ ]nh n a bu n= −  
 
That this is the unit-pulse response also can be verified directly, by showing that  
 
 [ ] [ 1] [ ]h n ah n b nδ+ − =  
 
From the form of h[n] it follows that a first-order, constant-coefficient, linear difference equation 
defines a causal LTI system. Furthermore the system is memoryless if and only if a = 0, and 
stable if and only if |a| < 1. 
 
Results are similar for systems described by second-order, constant-coefficient, linear difference 
equations, 
 1 2[ ] [ 1] [ 2] [ ],y n a y n a y n bx n n+ − + − = −∞ < < ∞  
as well as higher order. That is, such equations describe causal, LTI systems. However, it is more 
difficult to compute the unit-pulse response, and to connect the stability property to the 
coefficients in the difference equation. 
 
Right-Sided Setting  Often we are interested in right-sided inputs, where the causality property of 
systems described by difference equations implies that the corresponding outputs are also right 
sided. This means that the difference equation need only be addressed for n ≥ 0, though we must 
view the output as zero for negative values of n. Therefore the “initial conditions” are 

[ 1] [ 2] 0y y− = − = =" . Nonzero initial conditions, as considered in mathematics or other 
engineering courses dealing with difference equations, cannot arise in the context of LTI systems, 
for a consequence of input-output linearity is that the identically zero input signal must yield the 
identically zero output signal. In summary, since we are focusing on systems whose input-output 
behavior is linear, we must require zero initial conditions in a right-sided setting. 
 
Exercises 
 
1.  Suppose an LTI system with input signal [ ] [ ] [ 2]x n u n u n= − −  has the response 

[ ] 2 [ ] 2 [ 2]y n r n r n= − − . Sketch this input signal and output signal, and also sketch the system 
response to each of the input signals below. 
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(a) [ ] 3 [ 1] 3 [ 3]ax n u n u n= − − −  
(b) [ ] [ ] [ 1] [ 2] [ 3]bx n u n u n u n u n= − − − − + −  
(c) [ ] [ ] [ 4]cx n u n u n= − −  
 
2.  Using the graphical method, compute and sketch [ ] ( * )[ ]y n h x n=  for 
(a) [ ] [ ] [ 3] , [ ] 3 [ 1] 3 [ 3]x n n n h n n nδ δ δ δ= − − = + − −  

(b) 
1, 0 3 1,1 3, 7 9

[ ] , [ ]
0, 0,

n n n
x n h n

else else
≤ ≤ ≤ ≤ ≤ ≤⎧ ⎧

= =⎨ ⎨
⎩ ⎩

 

(c) [ ] 1 , , [ ] [ ] 2 [ 1] [ 2]x n for all n h n n n nδ δ δ= = − − + −  
(d) [ ] [ 1] [ 3], [ ] [ ] [ 3]x n u n u n h n u n u n= − − − = − + −  

(e)  ( )[ ] [ ] [ 2] , [ ] [ ]n nx n e u n u n h n e u n−= − − =  

(f)  [ ] [ ]x n u n=  ,   [ ] (1/ 2) [ 1]nh n u n= −  
(g)   [ ] [ ]x n r n=  , [ ]h n  shown below 
 

 
(h)  [ ] [ ]x n u n=  ,      [ ] [ ] [3 ]h n r n u n= −  

(i)    [ ] [ 1] [ 4], [ ] ( 1) [ ]nx n u n u n h n u n= − − − = −  
(j)    [ ] [ ], [ ] [ ] 2 [ 1] [ 1]x n r n h n n n nδ δ δ= = − − + +  
 
3.  Using the analytical method, compute and sketch [ ] ( * )[ ]y n h x n=  for 
the following signals, where α and β are distinct real numbers. 

(a) [ ] [ ] , [ ] [ ]n nx n u n h n u nα β= =  

(b) [ ] , [ ] [ ]n nx n h n u nα β= = −  (What additional assumption on α and β is needed?) 
(c) [ ] [ 1] , [ ] 4 [3 ]x n n h n u nδ= − = −  

(d)  2[ ] [ 2], [ ]nx n u n h nα β−= − =  (What additional assumption on α and β is needed?) 
 

4.   An LTI system with a unit-step input signal has the response [ ] (1/ 2) [ ]ny n u n= . What is the 
response of the system to the input signal shown below. 
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5.  Consider discrete-time signals [ ]h n  that is zero outside the interval 0 1n n n≤ ≤ and [ ]x n  that 
is zero outside the interval 2 3n n n≤ ≤ . Show how to define 4n  and 5n  such that 
( )[ ] 0h x n∗ = outside the interval 4 5n n n≤ ≤ . 
 
6.  Compute the overall unit-pulse response for the interconnections of DT LTI systems shown 
below. 
(a) 

       
(b) 

 
 
7.  Suppose [ ] ( )[ ]y n x h n= ∗  . For each of the pairs of signals given below, show how 

ˆˆ ˆ[ ] ( )[ ]y n x h n= ∗  is related to [ ]y n . 

(a)  ˆˆ[ ] [ 3] , [ ] [ 3]x n x n h n h n= − = +  

(b)  ˆˆ[ ] [ 3] , [ ] [ 3]x n x n h n h n= − = −  

(c)  ˆˆ[ ] [ ] , [ ] [ ]x n x n h n h n= − = −  

(d)  ˆˆ[ ] [ 1 ] , [ ] [1 ]x n x n h n h n= − − = −  
 
8.  Determine if the DT LTI systems with the following unit-pulse responses are causal and/or 
stable. 

(a) ( )1
2[ ] [ 1]

n
h n u n= +  

(b) ( )1
2[ ] [ ]

n
h n u n= −  

(c) [ ] 2 [3 ]nh n u n= −  

(d) [ ] 2 [ ]nh n r n= −  

9.  For the DT LTI system with unit-pulse response ( )1
2[ ] [ ]

n
h n u n= , use the eigenfunction 

properties to compute the response to the input signals 



 67

(a) [ ] 1x n =  

(b) [ ] ( 1)nx n = −  
(c) [ ] 2cos( / 2)x n nπ=  

(d) 3
2[ ] 3sin( )x n nπ= −  
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Notes for Signals and Systems 
 

6.1 CT LTI Systems and Convolution 
 
The treatment of the continuous-time case parallels the discrete-time case, except that some facts 
are more difficult to prove. It is easy to check that given a continuous-time signal ( )h t ,  a system 
described by the convolution integral 

 ( ) ( ) ( )y t x h t dτ τ τ
∞

−∞
= −∫  

is an LTI system. (We are assuming here, as usual, that ( )h t  and the input signal ( )x t  are such 
that the integral is defined.)  Indeed, combining the characterizing conditions for linearity and 
time invariance, we need only check the following. For any input signals 1( )x t  and 2( )x t , with 
corresponding responses 1( )y t  and 2( )y t , and for any constants a  and ot , the response to 
 1 2( ) ( ) ( )ox t a x t x t t= + −�  
should  be 
 1 2( ) ( ) ( )oy t a y t y t t= + −�  
So, for a system described by convolution, we compute the response to ( )x t�  as 

 
1 2

1 2

( ) ( ) ( ) [ ( ) ( )] ( )

( ) ( ) ( ) ( )

o

o

y t x h t d a x x t h t d

a x h t d x t h t d

τ τ τ τ τ τ τ

τ τ τ τ τ τ

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

= − = + − −

= − + − −

∫ ∫

∫ ∫

� �

 

Changing the variable of integration from τ  to otσ τ= −  in the last integral gives 

 1 2

1 2

( ) ( ) ( ) ( ) ( )

( ) ( )

o

o

y t a x h t d x h t t d

a y t y t t

τ τ τ σ σ σ
∞ ∞

−∞ −∞
= − + − −

= + −

∫ ∫
�

 

Thus a system described by convolution is an LTI system. Furthermore, the characterizing signal 
( )h t  is the unit-impulse response of the system, as is easily verified by a sifting calculation: if 
( ) ( )x t tδ= , then 

 ( ) ( ) ( ) ( ) ( ) ( )y t x h t d h t d h tτ τ τ δ τ τ τ
∞ ∞

−∞ −∞
= − = − =∫ ∫  

It is also true that the input-output behavior of essentially all continuous-time, linear, time-
invariant systems can be described by the convolution expression. However, to prove this fact 
involves delicate arguments that we will skip.  
 
Evaluation of the Convolution Integral 
 
Calculating the response of a system to a given input signal by evaluation of the convolution 
integral is not as simple as might be expected. This is because a family of integrations, 
parametrized by t , must be evaluated, and the character of the integration can change with the 
parameter. There are three main approaches. 
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Analytical Method  When both the impulse response ( )h t  and the input signal ( )x t  have simple 
analytical descriptions, the convolution integral sometimes can be evaluated by analytical means. 
 
Example  If the input signal and the unit-impulse response are unit-step signals, then the response 
can be written as 

 ( ) ( ) ( ) ( ) ( )y t x h t d u u t dτ τ τ τ τ τ
∞ ∞

−∞ −∞
= − = −∫ ∫  

Of course, the integrand is zero for negative τ , regardless of the value of t , and so 

 
0

( ) ( )y t u t dτ τ
∞

= −∫  

Now the integrand is zero for tτ > , but this simplification involves the value of t . In fact 

 

0

0 , 0

( )
1 , 0

t

t

y t
d t tτ

≤⎧
⎪

= ⎨ = >⎪
⎩
∫

 

Summarizing, we can write the response as the unit ramp: 
 ( ) ( ) ( )y t t u t r t= =  
 
Example  If the unit-impulse response is a unit-step function and the input signal is the constant 
signal ( ) 1x t = , then the response calculation is 

 ( ) ( ) ( ) ( )y t x h t d u t dτ τ τ τ τ
∞ ∞

−∞ −∞
= − = −∫ ∫  

Of course the conclusion is that the response is undefined for any value of t ! This is a reminder 
that convolution expressions must be checked to make sure they are meaningful. 
 
Graphical Method  For more complicated cases, a graphical approach is valuable for keeping 
track of the calculations that must be done. Basically, we plot the two signals in the integrand, 

( )x τ  and ( )h t τ− , versus τ , for the value of t   of interest. Then multiplying the two signals 
provides the integrand, and the net area must be computed. 
 
Example  We compute  

 ( ) ( ) ( )y t x h t dτ τ τ
∞

−∞
= −∫  

for the input signal and unit-impulse response shown below. 

       
First the impulse response is flipped and shifted on the τ  axis to a convenient value of t . Then 
the input signal is plotted in the variable τ  immediately below to facilitate the multiplication of 
signals: 
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It is easy to see that for 2t <  and for 5t >  the product of the two signals is identically zero, and 
so the response is  ( ) 0y t =  for these two ranges of t .  
For 2 3t≤ ≤ ,  

 
2

( ) 2 2 4
t

y t d tτ= = −∫  

For 3 4t≤ ≤ , 

 
1

( ) 2 2
t

t
y t dτ

−
= =∫  

For 4 5t< ≤ , 

 
4

1
( ) 2 10 2

t
y t d tτ

−
= = −∫  

Of course these calculations are also obvious from consideration of the multiplication of the two 
signals in the various ranges and sketches of the resulting integrand. In any case, sketching the 
response yields 

 
 
LTI Cleverness Method  If one of the signals in the convolution can be written as a linear 
combination of simple, shifted signals, then by the properties of linearity and time invariance, the 
response can be computed from a single convolution involving the simple signals.  
 
Example  In the example given above, we can write ( ) ( 2) ( 4)x t u t u t= − − − , that is, ( )x t  is a 
linear combination of shifted step functions. If we compute the convolution 

 ( ) ( ) ( )y t u h t dτ τ τ
∞

−∞
= −∫

�  

then the response we seek is given by 
 ( ) ( 2) ( 4)y t y t y t= − − −� �  
The reader is encouraged to work the details and sketch ( )y t . 
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The Web lecture linked below can be consulted for further discussion. 
 

ILM: LTI Systems and Convolution 
 

But be aware that the notation in the Web lecture is a bit different than, and not as good as, what 
we have been using in class. 
 
6.2  Properties of Convolution – Interconnections of CT LTI Systems 
 
This topic also is covered in the interactive Web lecture. In our class notation, where we write 
 ( ) ( )( )y t h x t= ∗  
 
the various properties of convolution appear as follows: 
 
• Commutativity: 

 ( )( ) ( )( )x h t h x t∗ = ∗  
• Distributivity: 

 ( )1 2 1 2( ( ) ( )( ) ( )( )x h h t x h t x h t∗ + = ∗ + ∗  
• Associativity: 

 ( ) ( )1 2 1 2( ) ( ) ( ( )x h h t x h h t∗ ∗ = ∗ ∗  
 
 
Additional properties include one that follows from linearity: For any constant b, 
 ( ) ( )( ) ( ) ( )bh x t b h x t∗ = ∗  
Also, one that follows from time invariance, though the notation is a bit awkward: For any time 
ot , if ˆ( ) ( )ox t x t t= − , then 

 ( ) ( )ˆ * ( ) ( )ox h t x h t t= ∗ −  

Finally, writing the unit impulse function as ( )tδ , we note that ( )( ) ( )x t x tδ ∗ = , for any ( )x t  
continuous at t = 0, and furthermore ( )( ) ( )t tδ δ δ∗ = . This last expression invokes Special 
Property 1 of Section 2.2, and ignores continuity requirements of the sifting property. But in the 
present context Special Property 1 states the plainly simple fact that the unit-impulse response of 
the system whose unit-impulse response is a unit impulse is a unit impulse. 
 
All of these properties can be interpreted in terms of block diagram manipulations involving LTI 
systems, just as in the discrete-time case. 
 
6.3  CT LTI System Properties 
 
The input-output behavior of a continuous-time LTI system is described by its unit-impulse 
response, ( )h t , via the convolution expression 

 ( ) ( ) ( ) ( ) ( )y t x h t d h x t dτ τ τ τ τ τ
∞ ∞

−∞ −∞
= − = −∫ ∫  

Therefore the input-output properties of an LTI system can be characterized in terms of properties 
of ( )h t . The basic results are similar to the discrete-time case, though, as usual in continuous 

http://www.jhu.edu/~signals/lecture1/frames.html
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time, there are unmentioned technical assumptions to guarantee that integrals are defined, and so 
on. 
 
• Causal System   An LTI system is causal if and only if ( ) 0h t =  for 0t < , that is,  

if and only if ( )h t  is right sided. 
 
Since the unit-impulse input is nonzero only at 0t = , and in particular is zero for 0t < , causality 
is equivalent to ( ) 0h t =  for 0t < . (Here we rely on the fact that the response of an LTI system 
to the identically-zero input signal is identically zero, and up to the time 0t =  a causal system 
does not know whether the input signal continues to be zero, or takes a nonzero value at 0t = .) 
 
• Memoryless  System   An LTI system is memoryless if and only if ( ) 0h t =  for  

0t ≠ .  
 
If  ( ) 0h t =  for 0t ≠ , then since 

 ( ) ( ) ( )y t h x t dτ τ τ
∞

−∞
= −∫  

it follows that ( )y t  can only depend on ( )x t . On the other hand, if ( ) 0h t ≠  for 0at t= ≠ , then 
the unit-impulse input, which is nonzero only at 0t =  yields a response that is nonzero at the 
nonzero time at . Thus the system is not memoryless.  
 
Suppose  ( )h t  is nonzero at only one point in time. Then unless ( )h t  is an impulse the response 
of the system to every input signal will be ( ) 0y t =  for all t . It follows from this discussion that 
a memoryless LTI system is characterized by an impulse response of the form ( ) ( )h t b tδ= , 
where b is a real constant. 
 
• Stable System   An LTI system is (bounded-input, bounded-output) stable if and  

only if the unit-impulse response is absolutely integrable. That is 

 | ( ) |h t dt
∞

−∞
∫  

is finite. 
 
To prove this, suppose ( )x t  is a bounded input, and | ( ) |x t M≤ , for all t. We use the fact that the 
absolute value of an integral with upper limit greater than lower limit is bounded by the integral 
of the absolute value of the integrand.  This should be believable from the corresponding fact 
about sums. Then the absolute value of the output signal satisfies 

 | ( ) | | ( ) | | ( ) | | ( ) |y t h x t d M h d MKτ τ τ τ τ
∞ ∞

−∞ −∞
≤ − ≤ ≤∫ ∫  

for all t, and therefore the system is stable. 
 
To prove that stability of the system implies absolute integrability of  ( )h t , we use the same sort 
of cleverness as in the discrete-time case. Consider the bounded input signal 
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1, ( ) 0

( )
1, ( ) 0

h t
x t

h t
− ≥⎧

= ⎨− − <⎩
 

Then the corresponding output signal, ( )y t , is bounded, say by the constant K, for all t. In 
particular, at 0t = , 

 (0) ( ) ( ) | ( ) |K y h x d h dτ τ τ τ τ
∞ ∞

−∞ −∞
≥ = − =∫ ∫  

Thus  ( )h t  is absolutely integrable. 
 
• Invertible  System   First note that the identity system in continuous time,  
( ) ( )y t x t= , has the unit impulse response ( ) ( )h t tδ= , and the inverse system for an LTI 

system must be an LTI system. Then we can make the following statement: An LTI system 
described by ( )h t  is invertible if and only if there exists a signal ( )Ih t  (the impulse response of 
the inverse system) such that 
 ( )( ) ( )Ih h t tδ∗ =  
 
Such an ( )Ih t  might not exist, and if it does, it might be difficult to compute. We will not pursue 
this further. 
 
6.4  Response to Singularity Signals 
 
It is easy to show that the response of a CT LTI system to a unit-step input signal is the running 
integral of the unit-impulse response. Indeed, if ( ) ( )x t u t= , then 

 ( ) ( ) ( ) ( )
t

y t h u t d h dτ τ τ τ τ
∞

−∞ −∞
= − =∫ ∫  

It takes a bit more work to show that the unit-ramp response can be written as an iterated running 
integral of the unit-impulse response. With ( ) ( )x t r t= , we can write 

 1 1 1 1 1 1( ) ( ) ( ) ( )( )
t

y t h r t d h t dτ τ τ τ τ τ
∞

−∞ −∞
= − = −∫ ∫  

where a subscripted variable of integration has been used to make the end result pretty. Applying 
integration-by-parts to this expression gives 

 
1 1

1 2 2 2 2 1( ) ( ) ( ) | ( ) ( )
t

ty t t h d h d d
τ τ

τ τ τ τ τ τ−∞
−∞ −∞ −∞

= − − −∫ ∫ ∫  

Evaluating the first term at 1 tτ =  and 1τ = −∞ shows that it vanishes, leaving 

 
1

2 2 1( ) ( )
t

y t h d d
τ

τ τ τ
−∞ −∞

= ∫ ∫  

 
For an input signal that has a regular geometric shape and can be represented conveniently as a 
linear combination of singularity signals, these expressions can be used to write the 
corresponding response as a linear combination of running integrals of the unit-impulse response. 
Of course, the utility of such an expression depends on the complexity of ( )h t . 
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Example  For the input signal 
 ( ) 2 ( ) ( 1) 3 ( 2)x t u t u t r t= − − + −  
the response of a CT LTI system can be written as 

 
11 2

2 2 1( ) 2 ( ) ( ) 3 ( )
t t t

y t h d h d h d d
τ

τ τ τ τ τ τ τ
− −

−∞ −∞ −∞ −∞
= − +∫ ∫ ∫ ∫  

 
6.5  Response to Exponentials (Eigenfunction Properties) 
 
For important classes of LTI systems, the responses to certain types of exponential input signals 
have particularly simple forms. These simple forms motivate many approaches to the analysis of 
LTI systems and we consider several variants, each of which requires slightly different 
assumptions on the system. As in the discrete-time case, an input signal is called an eigenfunction 
of the system if the response is simply a constant multiple of the input signal. 
 
• Real Eigenfunctions  Suppose the LTI system is causal and stable, and suppose  

the input signal is the real, growing exponential 

 ( ) , 0 ,ot
ox t e tσ σ= ≥ −∞ < < ∞  

Then 

 

( )

0

( ) ( ) ( )

( )

o o o

o o

t t

t

y t h e d h e d e

h e d e

σ τ σ τ σ

σ τ σ

τ τ τ τ

τ τ

∞ ∞
− −

−∞ −∞
∞

−

= =

=

∫ ∫

∫

 

where the lower limit has been raised to zero since the unit-impulse response is right sided. 
Convergence of the integral is guaranteed by the stability assumption, and by the fact that 

| | 1 , 0oe σ τ τ− ≤ ≥ . The details rely on the fact that the absolute value of an integral is less 
than the integral of the absolute value (so long as the upper limit is greater than the lower limit. 
Explicitly, 

 
0 0 0

( ) | ( ) | | ( ) |o oh e d h e d h dσ τ σ ττ τ τ τ τ τ
∞ ∞ ∞

− −≤ ≤ < ∞∫ ∫ ∫  

Therefore we can define the constant ( )oH σ  by 

 
0

( ) ( ) ooH h e dσ τσ τ τ
∞

−= ∫  

and write 

 ( ) ( ) ,ot
oy t H e tσσ= −∞ < < ∞  

It is important to observe that only one integral must be evaluated to compute this response, in 
contrast with the general convolution calculation that involves a family of integrals. 
 
• Complex Eigenfunctions  Though we consider only real LTI systems, that is,  

systems with a real unit-impulse response ( )h t , it is convenient for mathematical purposes to 
permit complex-valued input signals. To see how the general calculation proceeds, write a 
complex input signal in rectangular form 
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 ( ) ( ) ( )R Ix t x t jx t= +  
where, for each t, 
 ( ) Re{ ( )} , ( ) Im{ ( )}R Ix t x t x t x t= =  
Then, since ( )h t  is real, and j is a constant, 

 

( ) ( ) ( )

( ) ( ) ( ) ( )R I

y t x h t d

x h t d j x h t d

τ τ τ

τ τ τ τ τ τ

∞

−∞
∞ ∞

−∞ −∞

= −

= − + −

∫

∫ ∫

 

That is, 

 
Re{ ( )} Re{( )( )} ( )( )
Im{ ( )} Im{( )( )} ( )( )

R

I

y t x h t x h t
y t x h t x h t

= ∗ = ∗
= ∗ = ∗

 

This means that with one complex calculation we include two real calculations 
 
The most important application of complex inputs is the case the LTI system is stable and the 
input is a phasor, 

 ( ) ,oj tx t e tω= −∞ < < ∞  
The response is given by 

 ( )( ) ( ) ( )o o oj t j j ty t h e d h e d eω τ ω τ ωτ τ τ τ
∞ ∞

− −

−∞ −∞
= =∫ ∫  

Here we define the complex constant 

 ( ) ( ) oj
oH h e dω τω τ τ

∞
−

−∞
= ∫  

where convergence of the integral is guaranteed by the stability assumption and the fact that  

 | | 1 ,oje ω τ τ− ≤ −∞ < < ∞  
Thus we have 

 ( ) ( ) ,oj t
oy t H e tωω= −∞ < < ∞  

 
Example  Suppose the signal ( ) sin( ) ,ox t t tω= −∞ < < ∞ , is applied to a stable LTI system 

with unit-impulse response ( )h t . Since ( ) Im{ }oj tx t e ω= , we immediately have that 

( ) Im{ ( ) }oj t
oy t H e ωω= . This expression can be made more explicit by writing ( )oH ω  in 

polar form: 

 ( )( ) | ( ) | oj H
o oH H e ωω ω= (  

Then 

 

( )

( ( ))

( ) Im{ ( ) } Im{| ( ) | }

| ( ) | Im{ }
| ( ) | sin( ( ) ),

o o o

o o

j t j H j t
o o

j t H
o

o o o

y t H e H e e

H e
H t H t

ω ω ω

ω ω

ω ω

ω
ω ω ω

+

= =

=

= + −∞ < < ∞

(

(

(
 

An alternate expression follows from writing ( )oH ω  in rectangular form, 
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 ( ) Re{ ( )} Im{ ( )}o o oH H j Hω ω ω= +  
Then 

 
{ }( ) Im [Re{ ( )} Im{ ( )}][cos( ) sin( )]

Re{ ( )}cos( ) Im{ ( )sin( ) ,
o o o o

o o o o

y t H j H t j t
H t H t t

ω ω ω ω
ω ω ω ω

= + +

= − −∞ < < ∞
 

Regardless of the particular form chosen for ( )y t , the key fact is the following. If the input is a 
sinusoid (or phasor) of frequency oω , then the output is a sinusoid (or phasor) with the same 
frequency, although the amplitude and phase angle, relative to the input sinusoid, is altered by the 
system. 
 
• SteadyState Eigenfunctions Suppose the LTI system is causal as well as stable,  

and the input signal is the right-sided phasor   

 ( ) ( )oj tx t e u tω=  
Then ( ) 0y t = for 0t < , by causality, and for 0t ≥ , 

 ( )

0
( ) ( ) ( ) , 0o o o

t
j t j j ty t h e d h e d e tω τ ω τ ωτ τ τ τ

∞
− −

−∞
= = ≥∫ ∫  

Therefore as t increases, ( )y t more and more closely approximates the steady-state response 

 ( ) ( ) oj t
ss oy t H e ωω=  

where 

 
0

( ) ( ) ( )o oj j
oH h e d h e dω τ ω τω τ τ τ τ

∞ ∞
− −

−∞
= =∫ ∫  

and again the stability assumption guarantees that ( )oH ω  is well defined. Thus the steady-state 
response of a causal and stable LTI system to a sinusoid (or phasor) of frequency oω , is a 
sinusoid (or phasor) with the same frequency. 
 
It is interesting to compare this steady-state property with the previous case where the phasor 
input signal defined for  t−∞ < < ∞  results in the phasor output at every value of t . Of course, 
since the input began at t = −∞ , every value of t  is a “steady-state” value in that an infinite 
period of time has elapsed since the beginning of the input signal. 
 
6.6  CT LTI Systems Described by Linear Differential Equations 
 
Systems described by constant-coefficient, linear differential equations are LTI systems. 
However, while stating this fact it is important to keep in mind that by LTI we mean “input-
output linear” systems and that our default time interval is t−∞ < < ∞ . Because ofthis setting, 
our treatment may not be as similar to other treatments as you might expect. 
 
Consider a system where the input and output signals are related by 
 ( ) ( ) ( ) ,y t ay t bx t t+ = −∞ < < ∞�  
where a and b are real constants. This is called a first-order, constant-coefficient, linear 
differential equation. Once ( )x t  is specified, this can be viewed as an equation that must be 
solved for ( )y t . It can be shown that there is only one solution, and we will demonstrate that this 
solution can be written as 
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 ( )( ) ( )
t

a ty t e bx dτ τ τ− −

−∞
= ∫  

The demonstration involves substituting into the differential equation, and proceeds in an 
elementary fashion by writing 

 ( ) ( )
t

at ay t e e bx dτ τ τ−

−∞
= ∫  

In this form, the calculation of ( )y t� is a simple matter of the product rule, and the fundamental 
theorem of calculus. Indeed, 

 
( ) ( ) ( )

( ) ( )

t
at a at aty t ae e bx d e e bx t

ay t bx t

τ τ τ− −

−∞
= − +

= − +

∫�
 

and the solution is verified. 
 
By inserting the appropriate unit-step function, we can write ( )y t  in the form 

 ( )( ) ( ) ( )a ty t be u t x dτ τ τ τ
∞

− −

−∞
= −∫  

and it is clear that the differential equation describes an LTI system with unit-impulse response 

 ( ) ( )ath t be u t−=  
Remark It is interesting to show directly that this impulse response satisfies the differential 
equation (for all t) when ( ) ( )x t tδ= . The verification involves using generalized calculus to 
compute 

 ( ) ( ) ( ) ( ) ( )at at ath t bae u t be t bae u t b tδ δ− − −= − + = − +�  
Then it is easy to see that  
 ( ) ( ) ( ) ,h t ah t b t tδ+ = −∞ < < ∞�  
 
From the form of the unit-impulse response, ( )h t , it follows that the LTI system described by the 
first-order linear differential equation is causal and is not memoryless. The system is stable if and 
only if 0a > . 
 
For a second-order, constant-coefficient, linear differential equation, 
 1 0( ) ( ) ( ) ( )y t a y t a y t bx t+ + =�� �  
and also for higher-order linear differential equations, the situation is similar to the first-order 
case. Such equations describe causal LTI systems. However it is more difficult to compute the 
unit-impulse response, and to characterize stability properties in terms of the coefficients of the 
differential equation. 
 
Right-Sided Setting  In other courses you may have encountered linear differential equations 

defined for 0t ≥ , with initial conditions specified at 0t −= . For example, in the first-order case, 
consider 
 ( ) ( ) ( ) , 0y t ay t bx t t+ = ≥�  
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with (0 )y −  and ( ), 0x t t ≥ , specified. This setting can be embedded into our framework by 
considering the input signal to be zero for 0t < . Then, by causality, the output signal is zero for 

0t < , and in particular, (0 )y −  must be zero. (Recall that if the input signal to an LTI system is 
zero for all t, then the output signal must be zero for all t.) Put another way, a constant-
coefficient, linear differential equation with right-sided input signals describes an LTI system if 
and only if all initial conditions are zero.  
 
Example  Suppose a voltage signal, ( )x t , is applied to the terminals of a series R-C circuit shown 
below, and the output signal of interest, ( )y t , is the voltage across the capacitor, C.  
 

 
 
Kirchhoff’s voltage law gives the circuit description as a first-order differential equation 
 1 1( ) ( ) ( ) ,RC RCy t y t x t t+ = −∞ < < ∞�  

This describes an LTI system with unit-impulse response 

 
1

1( ) ( )RC t
RCh t e u t−

=  

If we are interested in the response of this system to sinusoidal inputs with frequency oω , we 
consider the input signal 

 ( ) ,oj tx t e tω= −∞ < < ∞  
and compute 

 

1

1

1

0

( )1
1

1
1

( ) ( )

0

o RC o

oRC
o

o

j j
o RC

j
jRC

jRC

H h e d e e d

e

τω τ ω τ

ω τ
ω

ω

ω τ τ τ
∞ ∞ −− −

−∞

− +−
+

+

= =

∞
=

=

∫ ∫

 

(Notice that the implicit assumption that R  and C  are positive is crucial in the evaluation of the 
integral. This is the stability requirement – with positive R  and C ,  ( )h t  is absolutely 
integrable.) Thus the response to the phasor input signal is 

 1
1( ) ,o

o

j t
jRCy t e tω

ω+= −∞ < < ∞  

 
From this basic fact, we can extract the response to various sinusoidal input signals. For example, 
if the voltage input signal is  
 ( ) cos( ) ( )ox t t u tω=  
Then the steady-state response of the circuit can be written as 
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{ } 1

2 2 2

2 2 2

( tan ( ))1 1
1 1

11
1

( ) Re Re

cos[ tan ( )]

o o o
o o

o

j t j t RC
ss jRC R C

o o
R C

y t e e

t RC

ω ω ω
ω ω

ω
ω ω

−−
+ +

−

+

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

= −
 

If the input frequency, oω , is large, then the steady-state voltage across the capacitor will be 
small. On the other hand, if the input frequency is small, then the steady-state response is similar 
in amplitude to the input signal. The phase angle of the response, relative to the input signal, also 
depends on the frequency. Furthermore, if the input signal is a linear combination of sinusoids at 
various frequencies, then the steady-state response will contain the same set of frequencies, but 
with the amplitudes and phase angles influenced according to ( )oH ω at the various values of 

oω . This is the basis of frequency-selective filtering. 
 
Exercises 
 
1. Using the graphical method, compute and sketch ( ) ( )( )y t h x t= ∗  for 

(a) ( ) ( ) , ( ) 2 ( ) 2 ( 1)th t e u t x t u t u t−= = − −  

(b) | |( ) , ( ) ( )th t e x t u t−= =  

(c) ( ) ( ) , ( ) ( 2)th t e u t x t u t= − = −  

(d)  ( ) ( ) , ( ) (3 )th t e u t x t u t−= = −  

(e)   2 1( ) ( ) , ( ) ( )t th t e u t x t e u t− −= =   

(f)   ( ) , ( ) ( ) ( )th t e x t t u tδ= = −  
 
2. An LTI system has the impulse response shown below: 

 
For an input signal of the form 

 
0

( ) ( )k
k

x t a t kTδ
∞

=
= −∑  

sketch the output signal if 
(a) 3 , 1kT a= =  for all 0k ≥  
(b) 2 , 1kT a= =  0k ≥  

(c) 3 , (1/ 2)k
kT a= =  0k ≥  
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3.  Suppose the continuous-time signal ( )h t  is zero outside the interval 0 1t t t≤ ≤ and the signal 
( )x t  is zero outside the interval 2 3t t t≤ ≤ . Show how to define 4t  and 5t  such that 

( )( ) 0h x t∗ = outside the interval 4 5t t t≤ ≤ . 
 
 
4.  Express ( ) ( )( )y t h x t= ∗

�� �  in terms of ( ) ( )( )y t h x t= ∗  for the following signal choices. 

(a) ( ) ( 1) , ( ) ( 2)x t x t h t h t= − = −
��  

(b) ( ) ( 2) , ( ) ( 2)x t x t h t h t= − = +
��  

(c) ( ) (2 ) , ( ) ( 2 )x t x t h t h t= = −
��  

(d) ( ) (3 ) , ( ) (3 )x t x t h t h t= =
��  

(e) ( ) ( ) , ( ) ( )x t x t h t h t= − = −
��  

 
5. Using the analytical method, compute and sketch ( ) ( )( )y t h x t= ∗  for 

(a)   ( ) , ( ) ( ) ( )th t e x t t u tδ= = −  
 
6. Determine if the LTI systems described by the following unit-impulse responses are stable 
and/or causal. 

(a) 2( ) ( 3)th t e u t−= +  

(b) 3( ) ( 4 )th t e u t= − −  

(c) 4| |( ) th t e−=  

(d) ( ) ( 3)th t e u t= −  
 
7. Determine if the following statements about LTI systems are true or false. Justify your 
answers. 
(a) If ( )h t  is right sided and bounded, then the system is stable. 
(b) If ( )h t is periodic and not identically zero, then the system is unstable. 
(c) The cascade connection of a causal LTI system and a non-causal LTI system is always non-
causal. 
(d) A memoryless LTI system is always stable. 
 
8.  Consider a system described by 

 2( )( ) ( 1)
t

ty t e x dτ τ τ− −

−∞
= −∫  

 
(a) Show that this is an LTI system. 
(b) Compute the unit-impulse response of the system. 
(c) Compute the response of the system to ( ) ( ) ( 1)x t u t u t= − − by convolution and then by using 
the fact that the unit-step response of an LTI system is the running integral of the unit-impulse 
response.. 
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9.  For the R-L circuit shown below, with input and output current signals as shown, and 
4, 4R L= = , compute 

 
(a) the steady-state response to the input signal ( ) 3cos( ) ( )x t t u t= . 
(b) the steady-state response to ( ) 2sin(3 ) ( )x t t u t= . 
(c) the response to ( ) 1x t = . 
 

10.  For the LTI system with unit-impulse response ( ) ( )th t e u t= , compute the response to the 

input signal 3( ) cos(2 )tx t e t= . (Hint: We did not discuss all the eigenfunction properties that 
LTI systems have.) 
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Notes for Signals and Systems 
 

7.1  Introduction to CT Signal Representation 
 
A fundamental idea in signal analysis is to represent signals in terms of linear combinations of 
‘basis’ signals. That is, we choose a set of basis signals, 
 0 1 1( ), ( ), , ( )Kt t tφ φ φ −…  
that are relatively simple, have useful properties, and are well suited to the class of signals to be 
represented. Then, given ( )x t , we compute scalar coefficients 0 1 1, , , Ka a a −…  such that 
 0 0 1 1 1 1( ) ( ) ( ) ( )K Kx t a t a t a tφ φ φ− −≈ + + +"  
There are many reasons for this approach. Certainly it makes sense for signal processing by LTI 
systems, particularly if the basis signals have nice properties as input signals to such systems. 
Also, storage or transmission of a signal can be accomplished by storage or transmission of the 
coefficients, 0 1 1, , , Ka a a −… , once a set of basis signals has been selected. 
 
There are many basic questions to be addressed in developing this approach: What properties of 
basis sets would be useful? How many basis signals are needed? What is the appropriate nature of 
the approximation “≈ ?”  Answers to these questions are developed in some detail in the next few 
sections. Those wishing to omit the general discussion can proceed directly to Section 8.1 where 
the representation of main interest is introduced in an ad-hoc fashion. 
 
Some examples can motivate the discussion. 
 
Example  Consider the signal 

 , 1 1( )
0,

te tx t
else

−⎧⎪ − ≤ ≤= ⎨
⎪⎩

 

and the basis set of three signals that are zero outside the interval 1 1t− ≤ ≤ , with 

 2
0 1 2( ) 1, ( ) , ( ) / 2; 1 1t t t t t tφ φ φ= = = − ≤ ≤  

(Indeed, it would be simpler to dispense with our default domain of definition of signals and 
simply work on the interval 1 1t− ≤ ≤  as the domain of definition. We retain the default mainly 
for emphasis.) 
 
Recalling Taylor’s formula, we can choose 
 0 1 2(0) 1, (0) 1, (0) 1a x a x a x= = = = − = =� ��  
to obtain the representation 

 
2

0 1 2
1 / 2, 1 1( ) ( ) ( ) ( )

0,
t t tx t t t t

else
φ φ φ

⎧⎪ − + − ≤ ≤≈ − + = ⎨
⎪⎩

 

Thus Taylor’s formula fits the framework we are considering, and we have some notion of the 
sense of approximation. That is, the approximation will be good for values of t close to 0t = , and 
exact only at zero. Of course the class of signals to be represented in this way must be twice 
differentiable at the 0t = , but the computation of the coefficients is rather simple. Furthermore, 
if we want to refine the representation by adding additional basis signals, for example 

3
3( ) /(3!)t tφ = , it is obvious how to compute the coefficient 3a , though the signal must be 
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thrice differentiable at 0t = .  An advantage of the setup is that in computing the fourth 
coefficient, first three coefficients in the representation do not change. 
 
Example  Consider the same signal and basis set, but suppose we now require that the 
approximation have zero error at the three values 1, 0,1t = − . Recalling polynomial 
interpolation, we proceed by setting 
 0 0 1 1 2 2( ) ( ) ( ) ( ), 1, 0,1x t a t a t a t tφ φ φ= + + = −  
This yields three equations in three unknowns: 

 
0 1 2

0
1

0 1 2

/ 2
1

/ 2

e a a a
a

e a a a−

= − +

=

= + +

 

Solving this set of equations gives 

 
2 2

0 1 2
1 2 11, 1.186, 1.063

2
e e ea a a
e e

− − +
= = = − = =  

and the resulting representation is 

 
0 1 2

2

( ) ( ) 1.186 ( ) 1.063 ( )

1 1.186 0.503 , 1 1
0,

x t t t t

t t t
else

φ φ φ≈ − +

⎧⎪ − + − ≤ ≤= ⎨
⎪⎩

 

This representation is perhaps better for some purposes than the Taylor’s formula, though it is 
inconvenient to have to solve equations for the coefficients. Also, if a fourth basis signal is added 

to the set, say 3
3( ) / 3!t tφ = , and we require zero error at a fourth point to be consistent with 

polynomial interpolation capabilities, then the representation must be recomputed from the 
beginning as the values of the first three coefficients will change. 
 
7.2  Orthogonality and Minimum ISE Representation 
 
A popular choice of the nature of the approximation in signal representation, and the 
approximation we focus on in the sequel, is the following. Given an energy signal ( )x t  and a set 
of basis energy signals 0 1 1( ), ( ), , ( )Kt t tφ φ φ −… , suppose the coefficients 0 1 1, , , Ka a a −…  are 
computed to minimize the integral square error, 

 
21

0
( ) ( )

K
k k

k
I x t a t dtφ

∞ −

=−∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑∫  

 
Because of the square, the representation error at each point in time is positively weighted in the 
process of minimization, and larger errors are more severely penalized. Both of these features are 
sensible for signal representation.  

• Orthogonality  Partly to ease the problem of computing the minimizing  
coefficients, we require that the basis set satisfy the condition 

 ( ) ( ) 0; , 0, , 1l kt t dt l k k Kφ φ
∞

−∞
= ≠ = −∫ …  
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A basis set that satisfies this condition is called orthogonal, and one consequence of orthogonality 
is that when the integrand in I is expanded, a large number of cross-terms disappear. It is 

notationally convenient to denote the energy of the thk  basis signal by 

 2 ( ) , 0,1, , 1k kE t dt k Kφ
∞

−∞
= = −∫ …  

If all the kE -coefficients are unity in an orthogonal basis set, the basis set is called orthonormal. 
It is important to emphasize that orthogonality and orthomormality are properties of basis sets. If 
a new basis signal is added to an orthogonal set, the check that the new set is orthogonal involves 
all the signals in the set. Also, if the time interval of interest is changed, the orthogonality 
condition might not hold for the new interval. 
 
Example  The basis set used in the examples in Section 7.1, 

2
0 1 2( ) 1, ( ) , ( ) / 2; 1 1t t t t t tφ φ φ= = = − ≤ ≤ ,  with all signals zero outside this interval,  is not 

orthogonal since, for example, 

 
1

2
0 2

1
( ) ( ) / 2 0t t dt t dtφ φ

∞

−∞ −
= ≠∫ ∫  

On the other hand, the basis set of rectangular pulses  

 
is orthogonal. This is clear because the basis signals are non-overlapping in the obvious sense. 

Also, the basis set is orthonormal since each 2( )k tφ  is a unit-area rectangular pulse. (Of course, 
overlapping signals also can be orthogonal, and orthonormal, but it is usually not obvious!) 
 

• Minimum ISE   
Given ( )x t  and an orthogonal basis set  
 0 1 1( ), ( ), , ( )Kt t tφ φ φ −…  
with basis signal energies 
 0 1 1, , , KE E E −…  
the minimum ISE coefficients are given by 

 
1 ( ) ( ) 0, 0, , 1k k
k

a x t t dt k K
E

φ
∞

−∞
= = = −∫ …  

To prove this result, first expand the quadratic integrand in I and distribute the integral over the 
sum of terms. Using orthogonality and the notation for basis signal energy, this gives 

 
1 12 2

0 0
( ) 2 ( ) ( )

K K
k k k k

k k
I x t dt x t t dt a E aφ

∞ ∞− −

= =−∞ −∞
= − +∑ ∑∫ ∫  

To minimize I, set the derivative of I with respect to each coefficient ka  to zero, 

 0 , 0,1, , 1
k

I k K
a
∂

= = −
∂

…  
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Because I is a quadratic polynomial in the coefficients, this is quite easy, yielding 

 2 ( ) ( ) 2 0, 0, , 1k k kx t t dt E a k Kφ
∞

−∞
− + = = −∫ …  

This expression easily rearranges to the claimed formula for the coefficients. To show that this 
indeed provides a minimum, it can be shown that the matrix of second partials is positive definite, 
an easy exercise left to the reader. 
 
Remark Orthogonality is such a useful property of basis sets that non-orthogonal sets are seldom 
encountered. Indeed, families of orthogonal basis sets of very different natures, suitable for 
representing widely varying classes of signals, have been discovered and cataloged. These sets 
often are named after the discoverer. 
 
Example  Consider again the signal 

 ( ) , 1 1tx t e t−= − ≤ ≤  
where we abandon the artifice of defining the given signal, and the basis signals, to be zero for 
| | 1t > , and simply work on the specified interval. This time we choose the first three Legendre 
basis signals: 

 23 1
0 1 2 2 2( ) 1, ( ) , ( ) ; 1 1t t t t t tφ φ φ= = = − − ≤ ≤  

and leave verification of orthogonality as an exercise, as well as verification that 

 0 1 2
2 22, ,
3 7

E E E= = =  

The minimum integral-squared-error representation is specified by the coefficients 

 

11 1
1 1

0 02 2 2
1 1

1 1
13 3

1 12 2
1 1

21 1
27 7 3 1

2 22 2 2 2
1 1

( ) ( ) 1.18

( ) ( ) 3 1.10

7( ) ( ) ( ) 0.14

t e e

t

t

a x t t dt e dt

a x t t dt te dt e

ea x t t dt t e dt
e

φ

φ

φ

−− −

− −

− −

− −

−

− −

= = = =

= = = − = −

−
= = − = =

∫ ∫

∫ ∫

∫ ∫

 

yielding the representation 

 2
0 1 2

3 1
2 2

( ) 1.18 ( ) 1.10 ( ) 0.14 ( )

1.18 1.10 0.14( ) , 1 1t

x t t t t

t t

φ φ φ≈ − +

= − + − − ≤ ≤
 

where the approximation is understood to be minimum integral-squared error using the first three 
Legendre basis signals. This representation can be refined by adding additional basis signals, and 
if orthogonality of the basis set is preserved we need only compute the new coefficients. For 
example, the fourth Legendre basis signal is 

 3
3( ) (5 / 2) (3/ 2)t t tφ = −  

with 3 2 / 7E = . Then, skipping the actual evaluation of the coefficient 

 
1

3 3
1

2 ( ) ( )
7

a x t t dtφ
−

= ∫  

the resulting representation is 
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 2 3
0 1 2 3 3

3 5 31
32 2 2 2

( ) 1.18 ( ) 1.10 ( ) 0.14 ( ) ( )

1.18 1.10 0.14( ) ( ) , 1 1t t t

x t t t t a t

t a t

φ φ φ φ≈ − + +

= − + − + − − ≤ ≤
 

 
Example  We could also represent the signal in the preceding example using the orthonormal 
basis of rectangular pulses considered before. In this case the minimum integral-squared error 
coefficients are given by 

 

1/ 3
1/ 3

0 0
1

1/ 3
1/ 3 1/ 3

1 1
1/ 3
1

1/ 3 1
2 2

1/ 3

( ) ( ) 3 / 2 3/ 2 ( )

( ) ( ) 3 / 2 3/ 2 ( )

( ) ( ) 3 / 2 3/ 2 ( )

t

t

t

a x t t dt e dt e e

a x t t dt e dt e e

a x t t dt e dt e e

φ

φ

φ

∞ −
−

−∞ −
∞

− −

−∞ −
∞

− − −

−∞

= = = −

= = = −

= = = −

∫ ∫

∫ ∫

∫ ∫

 

The nature of the resulting representation is shown below, and it is clear that this basis set is not 
particularly well suited to smoothly varying signals. Also, note that in this case it is not clear how 
to add basis signals to maintain orthonormality and improve the representation.  

 
Example  Consider the first three basis signals in the Walsh basis set, as shown below. These 
typically are defined on the time interval 0 1t≤ ≤ , and we assume the basis signals are zero 
outside this interval, as is the signal to be represented.  

 
It is straightforward to verify that this is an orthonormal basis set by time slicing the integrals 
involved. For example, 

 
1 1/ 2 1

0 1
0 0 1/ 2

( ) ( ) 1 ( 1) 0t t dt dt dtφ φ = + − =∫ ∫ ∫  

Using this basis set to represent the signal 

 ( ) , 0 1tx t e t−= ≤ ≤  
yields the coefficients 
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1
1

0
0
1/ 2 1

1/ 2 1
1

0 1/ 2
1/ 4 3/ 4 1

2
0 1/ 4 3/ 4

1 0.632

1 2 0.155

0.019

t

t t

t t t

a e dt e

a e dt e dt e e

a e dt e dt e dt

− −

− − − −

− − −

= = − =

= − = − + =

= − − =

∫

∫ ∫

∫ ∫ ∫

 

and the representation shown below. 

 
 
In this case there is a natural continuation of the basis set that will refine the staircase 
approximation evident in the representation, though we leave further details to references. 
 
7.3 Complex Basis Signals 
 
Even though we are interested in representing real signals, it turns out that complex basis signals 
can be mathematically convenient. A suitable notation for a complex basis set is to number the 
basis signals as 
 ( 1) 1 0 1( ), ( ), , ( ), ( ), ( ), , ( )K K Kt t t t t tφ φ φ φ φ φ− − − −… …  

where 0( )tφ  is real, and  

 ( ) ( ) , 1, 2,k kt t k Kφ φ∗− = = …  
As we will see below, the condition that conjugate basis signals be included in the set yields the 
pleasing result that the approximation to a real signal is real. These 2 1K +  basis signals should 
be considered on the same interval as the signals to be represented, with everything set to zero 
outside this interval. We simply choose the default interval, t−∞ < < ∞ , for the purpose of 
exposition.  
 
The appropriate definition of integral-squared error must account for the possibility of a complex 
representation, though, as mentioned above, this will not occur. Thus we use the magnitude 
squared, instead of the square, in the integrand, and write 

 

2

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

K
k k

k K

K K
k k k k

k K k K
K K

k k k k
k K k K

I x t a t dt

x t a t x t a t dt

x t a t x t a t dt

φ

φ φ

φ φ

∞

=−−∞
∗∞

=− =−−∞
∞

∗ ∗

=− =−−∞

= −

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∫

∑ ∑∫

∑ ∑∫
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It turns out that the appropriate definition of orthogonality in this case is the condition 

 ( ) ( ) 0 ,l kt t dt l kφ φ
∞

∗

−∞
= ≠∫  

While we will not justify it in detail, it is clear that this condition eliminates cross-terms among 
the basis signals in expanding the quadratic integrand of I. Also, we let 

 2| ( ) | ( ) ( ) , 0, 1, ,k k k kE t dt t t dt k Kφ φ φ
∞ ∞

∗

−∞ −∞
= = = ± ±∫ ∫ …  

With this setup, it can be shown that the coefficients , ,K Ka a− …  that minimize the integral-
squared error for a real signal ( )x t  are given by 

 
1 ( ) ( ) , 0, 1, ,k k
k

a x t t dt k K
E

φ
∞

∗

−∞
= = ± ±∫ …  

Remarks 
• The denominator of this expression, the real, nonnegative number kE , typically is pre-

computed for standard basis sets.  

• Since ( )x t  is real, and kE  is real, the complex conjugate of the thk  coefficient satisfies 

 

1 1

1 1

[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

k k

k k

k k kE E

k kE E

k

a x t t dt x t t dt

x t t dt x t t dt

a

φ φ

φ φ

∗∞ ∞
∗ ∗ ∗

−∞ −∞
∞ ∞

∗
−

−∞ −∞

−

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠

= =

=

∫ ∫

∫ ∫  

Therefore, only 1K +  coefficients, not 2 1K + , need to be computed explicitly. Furthermore, 
this property implies that the complex conjugate of each term in the representation also is in the 
representation. Specifically, 

 ( ) ( ) [ ( )]k k k k k ka t a t a tφ φ φ∗ ∗ ∗
− − = =  

That is, the minimum integral-square-error approximation of a real signal is a real signal, and it is 
perfectly sensible to write 

 ( ) ( )
K

k k
k K

x t a tφ
=−

≈ ∑  

where the approximation is in the sense of minimum integral-square error. 
 
7.4 DT Signal Representation 
 
Just as in the continuous-time case, it is convenient to represent discrete-time signals as linear 
combinations of specified basis signals,  
 0 1[ ], [ ], , [ ]Mn n nφ φ φ…  
where we assume that the signal to be represented and all the basis signals are defined on the 
same sample range, with the default range n−∞ < < ∞ . Though we are interested in representing 
real signals, sometimes complex basis signals again are mathematically convenient, and we 
require that conjugates be included. That is, if [ ]k nφ  is complex, then for some m  we 
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have [ ] [ ]m kn nφ φ∗=  for all n . However, in the discrete-time case it is not traditional to adopt the 
same numbering system as the continuous-time case. 
 
A meaningful objective is to choose coefficients 0 1, , , Ma a a…  to minimize the sum-squared 
error  

 2

0
| [ ] [ ] |

M
m m

n m
I x n a nφ

∞

=−∞ =
= −∑ ∑  

(Magnitude signs are used for the summand because at this point we have not specified that the 
representation be real, though the signal ( )x t  is assumed to be real. Once this important 
condition is addressed, then magnitude signs are superfluous.) 
 
The analysis of this problem proceeds in a manner very similar to the continuous-time case. A 
very convenient property of basis sets is orthogonality, which in the discrete-time case is defined 
by the condition 

[ ] [ ] 0 ,k m
n

n n k mφ φ
∞ ∗

=−∞
= ≠∑  

Furthermore, the basis set is called orthonormal if the following condition also holds: 

 [ ] [ ] 1 , 0,1, ,m m
n

n n m Mφ φ
∞ ∗

=−∞
= =∑ …  

Clearly this quantity must be a positive number, assuming that none of the basis signals is 
identically zero, and the condition that the positive number be unity is indeed a normalization of 
the basis signals. 
 
To minimize I it is convenient to write the (possibly) complex coefficients ma  in rectangular 
form, expand the expression for I, and set the derivatives with respect to each real and imaginary 
part to zero. Orthogonality simplifies this process considerably, and the result is that the 
minimizing coefficients are given by 

 
[ ] [ ]

, 0,1, ,
[ ] [ ]

m
n

m

m m
n

x n n
a m M

n n

φ

φ φ

∞ ∗

=−∞
∞ ∗

=−∞

= =
∑

∑
…  

This expression should appear natural from the continuous-time case Further computation, also 
omitted, shows that the second-derivative test for minimality is satisfied. 
 
Since we require that the basis set be self conjugate, that is for each k there is an m such that 

[ ] [ ]k mn nφ φ∗ = , then the corresponding coefficients in the minimum SSE representation satisfy  

 
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

m k
n n

m k

m m k k
n n

x n n x n n
a a

n n n n

φ φ

φ φ φ φ

∞ ∞ ∗

∗ =−∞ =−∞
∞ ∞∗ ∗

=−∞ =−∞

= = =
∑ ∑

∑ ∑
 

 
The resulting representation 
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 0 0 1 1[ ] [ ] [ ]M Ma n a n a nφ φ φ+ + +"  
is a real signal since for every k there is an m such that the corresponding summands satisfy 

 [ ] [ ]k k m ma n a nφ φ∗ ∗ =  
and the sums of these pairs of terms is real. 
 
Exercises 
 
1.  Show that the basis set that is defined on 1 1t− ≤ ≤  by 

 23 1
0 1 2 2 2( ) 1 , ( ) , ( )t t t t tφ φ φ= = = −  

with the signals zero outside of this interval, is an orthogonal basis set on the interval 

t−∞ < < ∞ . If we change the third signal to 2
2( ) , 1 1t t tφ = − ≤ ≤ , is the new basis set 

orthogonal on t−∞ < < ∞ . 
 
2.   (a) Show that for any ( )x t ,  
 ( ) { ( )} , ( ) { ( )}ev odx t Ev x t x t Od x t= =  
form an orthogonal basis set over any interval of the form T t T− ≤ ≤ . 
 
(b) Suppose ( ) , 0, , 1k t k Kφ = −…  is an orthogonal basis set on the interval 1 1t− ≤ ≤ . Let 

( ) ( / 3) , 0, , 1k kt t k Kϕ φ= = −… . On what interval, T t T− ≤ ≤ , if any, is 
( ) , 0, , 1k t k Kϕ = −…  an orthogonal set? 

 
(c) Suppose ( ) , 0, , 1k t k Kφ = −…  is an orthogonal basis set on the interval 0 1t≤ ≤ . Let 

( ) (3 1) , 0, , 1k kt t k Kϕ φ= − = −… . On what interval time interval, if any, is 
( ) , 0, , 1k t k Kϕ = −…  an orthogonal set? 

 
3.  Consider the set of signals defined as shown for 0 4t≤ ≤ , and defined to be zero outside this 
interval: 
 0 1 22( ) sin( ) , ( ) ( 1) ( 3) , ( ) ( ) 2 ( 2)t t t u t u t t r t r tπφ φ φ= = − − − = − −  

Is this an orthogonal set on the interval 0 4t≤ ≤ ? 
 
4.  The fourth Walsh basis signal is defined as shown below 

 
For the signal ( ) , 0 1tx t e t−= ≤ ≤ , compute and sketch the 
(a) minimum integral square error representation using 0 1( ) , ( )t tφ φ , 
(b) minimum integral square error representation using 2 3( ) , ( )t tφ φ , 
(c) minimum integral square error representation using the first 4 Walsh basis signals. 
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5.  Determine values of the coefficients a, b, and c so that the signals 

 2
0 1( ) , ( )t t tt ae t be ceφ φ− − −= = +  

form an orthonormal basis set on the time interval 0 t≤ < ∞ . 
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Notes for Signals and Systems 

 
8.1 CT Fourier Series 

 
Informally, the Fourier series representation involves writing a periodic signal as a linear 
combination of harmonically-related sinusoids. This is a surprising yet familiar notion. For an 
introduction based on audio signals, visit 
 

Listen to Fourier Series 
 
We offer two approaches to developing the subject mathematically. For those who have skipped 
over the general introduction to signal representation in Chapter 7, we provide a shortcut. For 
those interested in a deeper understanding based on the notions in Chapter 7, we present the 
Fourier series as a special case of an orthogonal representation using a particular set of complex 
basis signals. 
 
• Shortcut  It is often more convenient to represent a periodic signal as a linear  

combination of  harmonically-related complex exponentials, rather than trigonometric functions. 
In these terms, the basic fact is that a real, periodic signal ( )x t , with fundamental period oT ,  can 
be written as 

 ( ) ojk t
k

k
x t X e ω∞

=−∞
= ∑  

where oω  is the fundamental frequency of ( )x t , 2 /o oTω π= . The coefficients kX  in general 
are complex. To see how to determine these coefficients, multiply both sides by the complex 

exponential signal ojl te ω− , where l is an integer and then integrate over one period. This gives, 
for any value of 1t , 

 
1 1

1 1

( )( )
o o

o o
t T t T

jl t j k l t
k

kt t
x t e dt X e dtω ω

+ +∞− −

=−∞
= ∑∫ ∫  

Using the easily-verified fact that  

 
1

1

( ) 0,
,

o
o

t T
j k l t

ot

k l
e dt

T k l
ω

+
− ≠⎧

= ⎨ =⎩
∫  

we obtain 

 
1

1

1 ( )
o

o
t T

jl t
l

o t
X x t e dt

T
ω

+
−= ∫  

This shortcut provides a formula for the Fourier series coefficients of a periodic signal, though a 
number of issues and questions are left aside. One of these is the nature of convergence of the 
infinite series, and another is the nature of approximation when a truncated series is used: 

 ( ) o
K jk t

k
k K

x t X e ω

=−
≈ ∑  

http://www.jhu.edu/~signals/listen-new/listen-newindex.htm


 93

We note here only that the approximation is real, since the coefficients obey the conjugacy 

relation l lX X∗
−=  and thus the complex congugate of the k l=  term is the k l= −  term, which 

is included in the sum. 
 

• The Fourier Basis Set  From a mathematical viewpoint, the Fourier series  
representation for real, periodic signals can be based on minimum integral-square-error 
representation using a complex, orthogonal basis set, where the basis signals are periodic with the 
same period as the signal being represented. This complex-form Fourier series is at first less 
intuitive than real forms, but it offers significant mathematical advantages. 
 
Suppose ( )x t  is real and periodic with fundamental period oT  and fundamental frequency 

2 /o oTω π= . We then choose a basis set of harmonically related phasors according to 

 ( ) , 0, 1 , ,ojk t
k t e k Kωφ = = ± ±…  

This basis set has several properties. 
• The basis set is self-conjugate, since 0( ) 1tφ =  and, for nonzero k, 

 ( ) ( )( ) ( )o o ojk t jk t j k t
k kt e e e tω ω ωφ φ

∗ − −∗
−= = = =  

(As in the exponent in this calculation, we often move negative signs around for convenience of 
interpretation.) 

• Every basis signal has period oT , 

 
2

( ) 2( ) ( )
( )

oTo o o o
jk Tjk t T jk t jk

k o k

k

t T e e e t e
t

π
ω ω πφ φ

φ

++ = = =
=

 

Furthermore, the signals 1( )tφ  and 1( )tφ− have fundamental period oT , the signals 2 ( )tφ  and  

2 ( )tφ− have fundamental period / 2oT , and so on. 
• The basis set is orthogonal on any time interval of length oT . To show this, we compute, 

for l k≠ , and any 1t , 

 

1 1 1

1 1 1

( ) 1

( ) 1

( )

( ) 11
( ) 1

( )
( )

( )2
( )

( ) ( )

1

1

0

o o o
o o o

o
o

j l k to o o
o

j l k to

o

t T t T t T
jl t jk t j l k t

l k
t t t

t Tj l k t o
j l k t

j l k Te
j l k

j l ke
j l k

t t dt e e dt e dt

e

e

e

ω

ω

ω ω ω

ω
ω

ω
ω

π
ω

φ φ

−

−

+ + +
− −∗

+−
−

−
−

−
−

= =

=

⎡ ⎤= −⎣ ⎦

⎡ ⎤= −⎣ ⎦
=

∫ ∫ ∫

 

 
Also, for l k= , 
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1 1

1 1

1

1

( ) ( )

1

o o
o o

o

t T t T
jk t jk t

k k k
t t

t T

o
t

E t t dt e e dt

dt T

ω ωφ φ
+ +

−∗

+

= =

= =

∫ ∫

∫

 

so that the basis set is orthonormal when 1oT = . 
 
Using these properties, we can compute the minimum integral-square-error representation for 

( )x t  over one fundamental period. Then since the signal and every term in the representation 
repeat, we have the minimum integral-square-error representation over any number of 
fundamental periods, and in fact over the interval t−∞ < < ∞ . Of course, if there is nonzero 
integral square error over one period, then there will be infinite integral square error over the 
infinite interval. However, it is clear that by minimizing integral square error over one period we 
are minimizing integral square error over the interval t−∞ < < ∞  in a reasonable sense. 
 
Using the general formula for coefficients that minimize integral square error, and adopting a 
special notation for the coefficients, let 

 
1 1

1 1

1 1( ) ( ) ( )
o o

o
o o

t T t T
jk t

k kT T
t t

X x t t dt x t e dtωφ
+ +

−∗= =∫ ∫  

This gives the representation 

 ( ) ( ) o
K K jk t

k k k
k K k K

x t X t X e ωφ
=− =−

≈ =∑ ∑  

where the approximation is understood to be in the sense of minimum integral square error using 
2 1K +  basis signals. Notice again that the representation is real, since, for any integer k, and any 
1t , 

 

1 1

1 1

1 1

1 1

1

1

1 1

1 1

1

( ) ( ) [ ( ) ( )]

( ) ( ) ( ) ( )

( ) ( )

o o

o o

o o

o o

o

o

t T t T

k k kT T
t t

t T t T

k kT T
t t

t T

k kT
t

X x t t dt x t t dt

x t t dt x t t dt

x t t dt X

φ φ

φ φ

φ

∗+ +
∗ ∗ ∗ ∗

+ +
∗ ∗∗

+
∗
− −

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

= =

= =

∫ ∫

∫ ∫

∫

 

Along with the relation ( ) ( )k kt tφ φ∗
−= , this implies that the complex conjugate of each term, 

ojk t
kX e ω , in the representation is also included in the representation. 

 
Example  The periodic signal shown below is a repeated version of a signal considered in earlier 
examples: 
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Clearly 3oT = , and therefore 2 / 3oω π= . This information specifies the Fourier basis set, and 
the coefficients are given by 

 

2

3

2 2

3 3

2 2

3 3

1 2

1 1

1 (1 ) (1 )

2
1 3

1 (1 )

2
3

1 1( ) ( )
3

11 1
13 3(1 )

3(1 )

o
o

T jk tjk t
k

o

jk t jk t

jk jk

X x t e dt x t e dt
T

e dt e
jk

e e
jk

π

π π

π π

ω

π

π

− + −−

− −

− + − +

−

+ − +

= =

−
= =

−+

−
=

+

∫ ∫

∫  

These coefficients are used in the expression 

 ( ) ojk t
k

k
x t X e ω∞

=−∞
= ∑  

 
We should not expect that the Fourier series coefficients will be simple or pretty in all cases! 
However, in some examples a little addition work yields an improved formula. 
 
Example Consider the periodic rectangular-pulse signal shown below, where of course the pulse 
width and fundamental period satisfy 1 / 2oT T< . 

 
The value of oT  fixes the fundamental frequency 2 /o oTω π= , and also fixes the basis signals. 
Choosing to integrate over the fundamental period centered at the origin, that is, compute the 
minimum ISE representation on the one-period time interval / 2 / 2o oT t T− < ≤ , the coefficient 
formula gives 

 
1

1

/ 2
1 1

/ 2
( ) ( )

o
o

o o
o

T T
jk t

k kT T
T T

X x t t dt e dtωφ −∗

− −
= =∫ ∫  

It is necessary to separate out the 0k = case, to obtain 

 
1

1

1

21
0 1

o o

T
T

T T
T

X dt
−

= =∫  

Then, for 0k ≠ , 
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( )1
1 1

1

1 1

11 1 1 1

1

11
2

1

sin( )

2sin( )

o o o o
o o o o o

jk T jk To o

T
jk t jk t jk T jk T

k T T jk jk T
T

e e o
k j

o

o o

T
X e dt e e e

T

k T
k

k T
k T

ω ω

ω ω ω ω
ω ω

π
ω
π

ω
ω

−

− − −− −

−

−

= = = −
−

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

=

∫

 

This can also be expressed in terms of the fundamental period, oT , as 

 1sin( 2 / )o
k

k T TX
k
π
π

=  

It turns out that this expression for the coefficients usually is presented in terms of a standard 
mathematical function, sinc( )θ , defined by 

 sin( )sinc( ) πθ
πθθ =  

Minor rewriting of kX  gives, for 0k ≠ , 

 1 1 12 2 21 1

1

sin( 2 / ) sin( 2 / ) sinc( )
2 /o o o

T T To o
k T T To

k T T kT TX k
k kT T
π π
π π

= = =  

Furthermore, a simple application of L’Hospital’s rule shows that sinc(0) 1= . Therefore this 
expression for the coefficients is suitable for all values of k. Thus we can write 

 
2

1 12 2( ) sinc( ) To
o o

jk tT T
T T

k
x t k e

π∞

=−∞
= ∑  

Alternately, again, we can write this representation in terms of the fundamental frequency as 

 1 1( ) sinc( )o o oT T jk t

k
x t k eω ω ω

π π

∞

=−∞
= ∑  

In any case, as a matter of good style, Fourier series coefficients that are in fact real should 
always be manipulated into real form! 
 
8.2 Real Forms, Spectra, and Convergence 
 
• Real Forms  The complex-form Fourier series, 

 ( ) o
K jk t

k
k K

x t X e ω

=−
= ∑  

can be rewritten in at least three different ways. First, we can group complex-conjugate terms to 
write 

0
1

0
1

0
1

( ) [ ]

[ ( ) ]

2Re{ }

o o

o o

o

K jk t jk t
k k

k
K jk t jk t

k k
k
K jk t

k
k

x t X X e X e

X X e X e

X X e

ω ω

ω ω

ω

−
−

=

∗

=

=

= + +

= + +

= +

∑

∑

∑
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Expressing kX  in polar form as | | kj X
k kX X e= (  yields 

 

( )
0

1

0
1

( ) 2 Re{| | }

2 | | cos( )

o k
K j k t X

k
k
K

k o k
k

x t X X e

X X k t X

ω

ω

+

=

=

= +

= + +

∑

∑

(

(
 

This is called the cosine trigonometric form.  
 
If we write kX  in rectangular form as Re{ } Im{ }k k kX X j X= + , then 

 { }
0

1

0
1

0
1

( ) 2 Re{ }

2 Re (Re{ } Im{ })

2[Re{ }cos( ) Im{ }sin( )]

o

o

K jk t
k

k
K jk t

k k
k
K

k o k o
k

x t X X e

X X j X e

X X k t X k t

ω

ω

ω ω

=

=

=

= +

= + +

= + −

∑

∑

∑

 

This is called the sine-cosine form of the Fourier series. 
 
A third form follows by again writing kX  in polar form. Using the facts that 0X  is real, and the 
real-part of a sum is the sum of the real parts, yields 

 ( )
0

1
( ) Re 2 | | o k

K j k t X
k

k
x t X X e ω +

=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑ (  

That is, ( )x t  is expressed as the real part of a sum of harmonic phasors. 
 
Each of these forms is useful in particular situations, but the complex-form Fourier series offers a 
general mathematical convenience and economy that is especially useful for electrical engineers. 
Therefore we will focus on this form, though alternate interpretations of the topics we discuss are 
available for the other forms as well. 
 
• Spectra The magnitude spectrum of a oT − periodic signal ( )x t  is a line chart  

showing | |kX  vs. k on a real axis, or, more often, vs. okω  on a real frequency ω  axis. The 
phase spectrum of ( )x t  is a line chart showing kX(  vs. k on a real axis, or vs. okω  on a real 
frequency ω  axis. When the signal is such that kX  is real for all k, we often simply plot a line 
chart of kX , and this is referred to as an amplitude spectrum. 
 
Example  For the periodic rectangular pulse signal, we computed the Fourier series coefficients 

 1 1 1
1

2 2 2
2sinc( ) sinc( )

o o o
o

T T T
Tk T T T

T
X k

k
θ

θ
= =

=
 

where the sinc function is defined as 

 
sin( )sinc( ) πθθ
πθ

=  
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This function provides an envelope for the Fourier series coefficients, and leads to an amplitude 
spectrum for the rectangular pulse train. First we show a plot of the envelope 1(2 / )sinc( )oT T θ , 
and then a plot of the values of the kX using this envelope, where of course 12 / 1oT T < . 

 

 
Translating the horizontal axis into a frequency axis gives the amplitude spectrum: 

 
 
From this amplitude spectrum we can easily plot the magnitude and phase spectra. Since 

| | | | | |k k kX X X∗
− = = , the magnitude spectrum is symmetric about the vertical axis, and since 

k k kX X X∗
− = = −( ( ( , the phase spectrum can be chosen to be anti-symmetric about the 

vertical axis by choosing the angle range from π−  to π .  
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• Convergence Issues  We have shown that the coefficient choice 

 1 ( ) , 0, 1, 2, ,o
o

o

jk t
k T

T
X x t e dt k Kω−= = ± ±∫ …  

minimizes the integral square error 

 2
2 1 [ ( ) ]o

o

K jk t
K k

k KT
I x t X e dtω

+
=−

= − ∑∫  

where we have added a subscript to emphasize that this is the integral square error with 2 1K +  
basis signals. The convergence issue we address is whether the integral square error approaches 
zero as K increases. That is, under what conditions do we have 
 2 1lim ( ) 0K KI→∞ + =  
This is a difficult question, and we will simply state the best known sufficient condition, called 
the Dirichlet condition: 
 
Theorem If ( )x t  is periodic with fundamental period oT , and if 
(a) | ( ) |

oT
x t dt < ∞∫ , 

(b) ( )x t  has at most a finite number of maxima and minima in one period, 
(c) ( )x t  has at most a finite number of finite discontinuities in one period, 
then 
(i) 2 1lim ( ) 0K KI→∞ + = , 

(ii) at each value of t where ( )x t  is continuous, ( ) ojk t
k

k
x t X e ω∞

=−∞
= ∑ , 

(iii) at each value of  t where ( )x t  has a discontinuity, ojk t
k

k
X e ω∞

=−∞
∑  takes the value of the 

mid-point of the discontinuity. 
 
Notice that the Dirichlet condition is a sufficient condition for a type of convergence of the 
Fourier series, and this is not the type of convergence typically studied in beginning calculus. 
Because it is a sufficient condition, there are signals that do not satisfy the  
Dirichlet condition but nonetheless have Fourier series with similar convergence properties. Also, 
there are different types of convergence that can be considered, though we will not consider these 
issues further. 
 
The nature of convergence of Fourier series results in an important phenomenon called the Gibbs 
Effect when a truncated (finite) Fourier series is used as an approximation to the signal. For 
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details on this, and on the important notion of windowing the coefficients to remove the effect, 
see the Web lecture 
 

Harmonic Phasors and Fourier Series 
 
and also the demonstration 
 

Phasor Phactory 
 
Both of these use the phasor representation of the Fourier series. 
 
Convergence issues aside, it is remarkable how well a few terms of the Fourier series can 
approximate a periodic signal. To get an appreciation of this, consult the demonstration 
 

Fourier Series Approximation 
 
This demonstration uses the cosine-trigonometric form of the Fourier series, and an obvious, 
appropriate modification of the notions of magnitude and phase spectra. Sketch in various signals 
and notice how 4 or 5 harmonics of the Fourier series can render a good approximation. 
 
8.3  Fourier Series Interpretations of Operations on Signals 
 
Periodic signals are determined, to desired accuracy in terms of integral square error, by 
knowledge of the fundamental frequency, oω , and a suitable number of the complex-form 
Fourier series coefficients, , 0, 1, ,kX k K= ± ±… . Thus the time-domain view of periodic 
signals is complemented by a “frequency domain” view, namely, the coefficients of various 
harmonic frequencies that make up the signal. This raises the possibility of performing or 
interpreting operations on signals by performing or interpreting operations on the frequency 
domain representation, that is, on the Fourier series coefficients 
 
We will not go through a long list of operations, since this topic will reappear when we consider a 
more general frequency-domain viewpoint that includes aperiodic signals as well. However we 
consider a few examples. 
 
Example Given a signal 

 ( ) o
K jk t

k
k K

x t X e ω

=−
= ∑  

suppose a new signal is formed by amplitude transformation, ˆ( ) ( )x t ax t b= + , where 0a ≠  and 
b are real constants. It is clear that ˆ( )x t  is periodic, with the same fundamental period/frequency 
as ( )x t , and indeed it is easy to determine the Fourier series coefficients of ˆ( )x t  by inspection. 
We simply write 

 ˆˆ( ) o o
K Kjk t jk t

k k
k K k K

x t X e b a X eω ω

=− =−
= = +∑ ∑  

and conclude that 

 0 , 0ˆ
, 0k

k

aX b k
X

aX k
+ =⎧

= ⎨ ≠⎩
 

http://www.jhu.edu/~signals/phasorlecture2/indexphasorlect2.htm
http://www.jhu.edu/~signals/phasorapplet2/phasorappletindex.htm
http://www.jhu.edu/~signals/fourier2/index.html
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This approach relies on the fact that the terms in a Fourier series for a periodic signal are unique, 
a fact that should be clear since each coefficient is determined independently of the others. 
However, a safer approach, especially for more complicated operations, is to begin with the 
expression for the Fourier series coefficients of the new signal, and relate it to the expression for 
coefficients of the original signal.  
 
Example  Suppose ˆ( ) ( )x t x at= , where a is a nonzero constant. Then ˆ( )x t  is periodic with 

fundamental period ˆ / | |o oT T a=  and fundamental frequency ˆ | |o oaω ω= . The complex-form 
Fourier series coefficients are given by 

 
ˆ /| |

| |ˆ | |1
ˆ

0 0

ˆ ˆ( ) ( )
o o

o o
oo

T T a
ajk t jk a t

k TT
X x t e dt x at e dtω ω− −= =∫ ∫  

To proceed, we need to separate the cases of positive and negative a. If 0a < , that is, | |a a= − , 
then the change of integration variable from t to | |at a tτ = = −  gives 

 

( )

0| | | | / 1
| |

0
0

1

ˆ ( ) ( )

( )

o
o o

o o
o

o
o

o

T
a jk a a jkd

k T a T
T

jk
k kT

T

X x e x e d

x e d X X

ω τ ω ττ

ω τ

τ τ τ

τ τ

−
−

−
−

∗− ∗
−

−

= =

= = =

∫ ∫

∫

 

It is left as an exercise to show that for 0a >  a somewhat different result is obtained, namely 
 ˆ k kX X=  
That is, time scale by a positive constant leaves the Fourier series coefficients unchanged, though 
of course the fundamental frequency is changed. On the other hand, as a particular example, time 
scale by 1a = − , which is time reversal, leaves the fundamental frequency unchanged, and the 
magnitude spectrum of the signal unchanged, but changes the phase spectrum. 
 
8.4 CT LTI Frequency Response and Filtering 
 
We can combine the Fourier series representation for periodic signals with the eigenfunction 
property for stable LTI systems to represent system responses to periodic input signals. Suppose 
the system has unit-impulse response ( )h t . Since we will be considering different frequencies, it 
is convenient to change our earlier notation. Rather than think of a fixed frequency, oω , we think 
of frequency as a variable, ω , and define the frequency response function of the system by 

 ( ) ( ) j tH h t e dtωω
∞

−

−∞
= ∫  

Of course, the stability assumption guarantees that ( )H ω  is well defined for all ω . Then given a 
periodic input signal described, at least approximately, by the Fourier series expression 

 ( ) o
K jk t

k
k K

x t X e ω

=−
= ∑  

linearity and the eigenfunction property give the output expression 

 ( ) ( ) o
K jk t

o k
k K

y t H k X e ωω
=−

= ∑  
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Letting ( )k o kY H k Xω= , and noting the conjugacy property that ( ) ( )H Hω ω∗− = , we see 

that the kY  coefficients satisfy k kY Y∗
− = . This leads to the conclusion that the kY ’s are Fourier 

series coefficients for the periodic output signal. This expression for ( )y t  can be converted to 
various real forms in the usual way. Of course, the output signal typically has the same 
fundamental frequency as the input signal, though not always since the frequency response 
function can be zero at particular frequencies. 
 
This property also carries over to the case of causal, stable LTI systems with “right-sided 
periodic” input signals. Namely, the steady-state response is periodic and is as described above.  
 
We can consider the magnitude of the frequency response function as a frequency-dependent gain 
of the system. That is, | ( ) |oH kω  is the gain of the system at frequency okω , the factor by 

which the amplitude of the thk  harmonic of the input signal is increased or decreased. This is the 
basis of frequency selective filtering, where an LTI system is designed to have desired effects on 
the frequency components of the input signal. To show the filtering properties of a system, we 
often display a plot of the magnitude of the frequency response function, | ( ) |H ω , vs. ω . 
 
Example  Consider again the R-C circuit in Section 6.6, with 1, 1R C= = . The unit-impulse 
response is 

 
11( ) ( ) ( )RC t t

RCh t e u t e u t− −= =  

Therefore the frequency response function for the circuit is 

 

(1 )

0
1

1

( ) ( )t j t j t

j

H e u t e dt e dtω ω

ω

ω
∞ ∞

− − − +

−∞

+

= =

=

∫ ∫
 

Since 
 

2
1

1
| ( ) |H

ω
ω

+
=  

it is straightforward to sketch the magnitude of the frequency response function: 

 
Clearly the circuit acts as a low-pass filter, and high-frequency input signal components are 
attenuated much more than low-frequency components. To be specific, suppose 
 ( ) 1 cos( ) cos(30 )x t t t= + +  
Since 

 0 30( ) Re{ } Re{ } Re{ }j t jt j tx t e e e= + +  
linearity and the eigenfunction property can be used to write the response as 

 0 30( ) Re{ (0) } Re{ (1) } Re{ (30) }j t jt j ty t H e H e H e= + +  
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Then the computations 

 / 4 / 21 1
302

(0) 1, (1) , (30)j jH H e H eπ π− −= = ≈  

give 
 1 1

302
( ) 1 cos( / 4) cos(30 / 2)y t t tπ π≈ + − + −  

 
Exercises 
 
1.  Compute the complex-form Fourier series coefficients and sketch the magnitude and phase 
spectra for  

(a)  the signal ( )x t  that has fundamental period 1oT = , with ( ) , 0 1tx t e t−= ≤ ≤ . 
(b)  the signal ( )x t  shown below 

 
(c)  the signal 

 ( ) ( 1) ( 2 )k

k
x t t kδ

∞

=−∞
= − −∑  

(d) the signal ( )x t  shown below 

 
 
2.  Suppose ( )x t  is periodic with fundamental period oT  and complex-form Fourier series 
coefficients kX . Show that 
(a) if ( )x t  is odd, ( ) ( )x t x t= − − , then k kX X−= −  for all k.  
(b) if ( )x t  is “half-wave odd,” ( ) ( / 2)ox t x t T= − + , then 0kX =  for every even integer k. 
(c) if ( )x t  is even, ( ) ( )x t x t= − , then k kX X−=  for all k. 
 
3.  Suppose the signal ( )x t  has fundamental period oT  and complex-form Fourier series 
coefficients kX . Derive expressions for the complex-form Fourier series coefficients of the 
following signals in terms of kX . 
(a)  ( ) 2 ( 3) 1x t x t= − +�  
(b)  ( ) (1 )x t x t= −�  
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(c)  ( ) ( )d
dtx t x t=�  

(d)  ( ) ( )
t

x t x dτ τ
−∞

= ∫
�  (What additional assumption is required on the Fourier series coefficients 

of ( )x t ?) Hint: 1

0

ˆ ( )
o

o
o

T t
jk t

k TX x d e dtωτ τ −

−∞
= ∫ ∫  and integration-by-parts can be used to write 

this in a way that kX  can be recognized. 
(e)  ( ) ( / 2)ox t x t T= +�  
 
4. Given the LTI system with unit-impulse response 4 | |( ) th t e−= ,  compute the Fourier series 
representation for the response ( )y t  of the system to the input signal 

(a) ( ) ( )
n

x t t nδ
∞

=−∞
= −∑  

(b)  ( ) ( 1) ( )n

n
x t t nδ

∞

=−∞
= − −∑  

 
5.  A continuous-time periodic signal ( )x t  has Fourier series coefficients  

 
/ 4(6 / ) , 1, 3

0 ,

jk

k
jk e k

X
else

π = ± ±
=
⎧
⎨
⎩

 

Compute and sketch the magnitude and phase spectra of the signal. 
 
6.  Answer, with justification, the following questions about the response of the stable LTI system 
with frequency response function 

 
5( )

3
H

j
ω

ω
=

+
 

(a) For a periodic input signal ( )x t  that has fundamental period 2oT π= , what harmonics will 
appear in the output signal ( )y t  with diminished magnitude? That is, what values of k yield 
| | | |k kY X< ? 
(b) For a periodic input signal that has fundamental period oT π= , what harmonics will appear 
in the output signal with diminished magnitude? 
 
7.  Answer, with justification,  the following questions about the response of the LTI system that 

has impulse response 3( ) 25 ( )th t t e u t−= . 
(a) For a periodic input signal ( )x t  that has fundamental period 2oT = , what harmonics will 
appear in the output signal ( )y t  with diminished magnitude? That is, what values of k yield 
| | | |k kY X< ? 
(b) For a periodic input signal that has fundamental period 4oT π= , what harmonics will appear 
in the output signal with diminished magnitude? 
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8.  Consider the LTI system that has impulse response 2( ) ( ) ( )th t t e u tδ −= − , and suppose the 
input signal is ( ) 1 2cos( ) 3cos(2 )x t t t= + + . Compute the response ( )y t . 
 

9.  Consider the LTI system that has impulse response ( ) ( ) 2 ( ) ( )t th t te u t e u t tδ− −= + − , and 
suppose the input signal is ( ) 2 2cos( )x t t= + . Compute the response ( )y t . 
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Notes for Signals and Systems 

 
9.1 Periodic DT Signal Representation (Fourier Series) 
 
Suppose [ ]x n  is a real, periodic signal with fundamental period oN  and, of course, fundamental 
frequency 2 /o oNω π= . We choose a basis set of oN  harmonically related discrete-time 
phasors, called the discrete-time Fourier basis set: 

 [ ] , 0,1, , 1ojk n
k on e k Nωφ = = −…  

(Often these signals are written out in the form 
2
No

jk n
e

π

, but we make use of the fundamental 
frequency to simplify the appearance of the exponent.) 
 
This basis set has several properties: 
• There are exactly oN  distinct basis signals of this type (not an infinite number as in the 

continuous-time case) since 

 
( )[ ]

[ ]

o o o o o
o

j k N n jk n jN n
k N

k

n e e e

n

ω ω ωφ

φ

+
+ = =

=
 

• The basis set is self-conjugate. Of course, [ ]o nφ  is real, and for any other k in the 

range, since 2 1o ojN je eω π= = , 

 
( )[ ]

[ ]

o o o o o o

o

jk n jk n jN n j N k n
k

N k

n e e e e

n

ω ω ω ωφ

φ

− − −∗

−

= = =

=
 

• Each basis signal is periodic with period (not necessarily fundamental period) oN , 

 
( ) 2[ ]

[ ]

o o ojk n N jk n jk
k o

k

n N e e e
n

ω ω πφ
φ

++ = =
=

 

• The basis set is orthogonal over any range of length oN  in n. To show this, consider the 
range 1or n r N≤ ≤ + − , where r is any integer, and compute 

 
1 1

[ ] [ ]
o o

o o
r N r N

jk n jm n
k m

n r n r
n n e eω ωφ φ

+ − + −
−∗

= =
=∑ ∑  

Changing the summation index from n to l n r= −  gives 

 

1 1
( ) ( )

0
1

( ) ( )

0

[ ] [ ]
o o

o o

o
o o

r N N
jk l r jm l r

k m
n r l

N
j k m r j k m l

l

n n e e

e e

ω ω

ω ω

φ φ
+ − −

+ − +∗

= =
−

− −

=

=

=

∑ ∑

∑

 

Next we apply the identity, which holds for any complex number α , 

 
1

1
0 1

, 1

, 1

o
No

N ol

l

N
α
α

α
α

α

−

−
= −

=⎧⎪= ⎨
≠⎪⎩

∑  
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to the summation to obtain 

 

( )

( )

( )

1 1
( ) ( )

0

( ) 1
1

[ ] [ ]

,

,

,
0 ,

o o
o o

j k m No oo
j k m o

lr N N
j k m r j k m

k m
n r l

o
j k m r e

e

o

n n e e

N k m

e k m

N k m
k m

ω

ω

ω ω

ω

φ φ

−

−

+ − −
− −∗

= =

− −
−

=

=⎧
⎪= ⎨ ≠⎪⎩

=⎧
= ⎨ ≠⎩

∑ ∑

 

 
 Thus we have established orthogonality, and furthermore,  

 
1

[ ] [ ]
or N

m m o
n r

n n Nφ φ
+ −

∗

=
=∑  

 
From these properties and the general formulas for minimum sum-squared-error representations 
in Section 7.4, we can conclude that to represent the oN − periodic, real signal [ ]x n  with 
minimum sum squared error per period using the Fourier basis set, the coefficients are given by 

 
1 1

1 1[ ] [ ] [ ]
o o

o
o o

r N r N
jm n

m mN N
n r n r

X x n n x n e ωφ
+ − + −

−∗

= =
= =∑ ∑  

Here r is any integer, and we again use the special notation mX  to denote the thm  Fourier series 
coefficient for the signal [ ]x n . Therefore the representation is written as 

 
1

0
[ ]

o
o

N
jm n

m
m

x n X e ω
−

=
≈ ∑  

where the approximation is in the sense of minimum sum-squared error. Of course it is important 
to immediately note that, in addition to the conjugacy relation 

 
( )[ ]

[ ]

o o o o o o

o

jm n jm n jN n j N m n
m

N m

n e e e e

n

ω ω ω ωφ

φ

− − − −∗

−

= = =

=
 

we have 

 

1 1
1 1

1
( )1

[ ] [ ]

[ ]

o o
o o o o

o o

o
o o

oo

r N r N
jm n jm n jN n

m N N
n r n r

r N
j N m n

N mN
n r

X x n e x n e e

x n e X

ω ω ω

ω

+ − + −
−∗

= =
+ −

− −
−

=

= =

= =

∑ ∑

∑

 

Therefore the conjugate of every term ojm n
mX e ω   is included as another term in the sum, and so 

the minimum sum-squared-error representation is real. 
 
Next, before working examples, we will compute a surprising expression for the minimum value 
of the sum squared error per period. Begin by writing the representation as 
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1 1 1

1

0 0 0
[ ]

o o o
o o o

o

N N N
jm n jm l jm n

m N
m m l

X e x l e eω ω ω
− − −

−

= = =

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑  

 
We can interchange the order of summation to write 

 

1 1 1
1

0 0 0
1 1

1

0 0

[ ]

[ ] [ ] [ ]

o o o
o o o

o

o o

o

N N N
jm n jl m jn m

m N
m l m

N N
l nN

l m

X e x l e e

x l m m

ω ω ω

φ φ

− − −
−

= = =
− −

∗

= =

=

=

∑ ∑ ∑

∑ ∑

 

But 

 
1

0

0,
[ ] [ ]

,
oN

l n
om

n l
m m

N n l
φ φ

−
∗

=

≠⎧
= ⎨ =⎩

∑  

by orthogonality, and thus  

 
1

0
[ ]

o
o

N
jm n

m
m

X e x nω
−

=
=∑  

That is, the sum squared error per period is zero! This means that our approximate representation 
actually is an exact representation. 
 
Example  This example is almost too simple, and there is danger of confusion, but it illustrates 
the calculation of the discrete-time Fourier series. Consider 

 [ ] ( 1)nx n = −  

In this case, 2oN = , oω π= , and the two basis signals are 0 1j ne π =  and j ne π , which of 

course is ( 1)n− . The Fourier coefficients are given by 

 

1
1

0 2
0

1
1

1 2
0

( 1) 0

1( 1) 1
2

n

n
j

n j n

n

X

eX e
π

π

=
−

−

=

= − =

−
= − = =

∑

∑
 

Thus the Fourier series representation is 

 
1

0
[ ] 0jm n j n j n

m
m

x n X e e eπ π π

=

⎡ ⎤= = + =⎣ ⎦∑  

Certainly this is no surprise. 
 
Example  Consider a periodic train of clumps of 12 1N +  pulses of unit height repeating with 
fundamental period oN , as shown below. 
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The Fourier coefficients can be computed from 

 
1 1

1 1

1
1 1[ ]

o
o o

o o

N N N
jm n jm n

m N N
n N n N

X x n e eω ω
− −

− −

=− =−
= =∑ ∑  

Clearly 0 1(2 1) / oX N N= + , and for nonzero m we replace the summation index n by 

1k n N= +  to write 

 
1 1

1 1
2 2

( )1 1

0 0
o o o

o o

N N
jm k N jm N jm k

m N N
k k

X e e eω ω ω− − −

= =
= =∑ ∑  

Recognizing the right-most summation to be of the form 

 ( ) 11 (2 1)2

0

1
1

o
o

o

k jm NN
jm

jm
k

ee
e

ω
ω

ω

− +
−

−
=

−
=

−
∑  

gives 

 

1
1

1 1

(2 1)
1

/ 2 / 2 / 2
1

/ 2 / 2 / 2

11

1
1

( )
( )

sin( ( 1/ 2)
sin( / 2)

o
o

o o

o o o o o

o o o o

o

jm N
jm N

m N jm

jm jm N jm jm N jm

N jm jm jm

o
N o

eX e
e

e e e e e
e e e

m N
m

ω
ω

ω

ω ω ω ω ω

ω ω ω

ω
ω

− +

−

− − −

− −

−
=

−

−
=

−
+

=

 

 
(As usual, when a coefficient can be written in real form we continue computing until we obtain a 
real expression.) Now an easy calculation with L’Hospital’s rule shows that this formula is valid 
for 0m =  as well. 
 
This expression of the Fourier coefficients is often written in terms of evaluations of an envelope 
function as 

 1 1sin[(2 1) / 2]
sin( / 2)o

m N o

NX
m

ω
ω ωω

+
=

=
 

and sometimes the ratio of sine functions is called the aliased sinc. 
 
There are two important observations about the DTFS, the first of which is something we 
discussed previously: 
 

Remark 1  Since both [ ]x n  and ojm ne ω−  , for any m , are periodic sequences in n with period 

oN , we can compute 
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1

1

0
[ ]

o
o

o

N
jm n

m N
n

X x n e ω
−

−

=
= ∑  

by summing over any oN  consecutive values of the index n, not necessarily the values from zero 
to 1oN − . This is often written as 

 1 [ ] o
o

o

jm n
m N

n N
X x n e ω−

=< >
= ∑  

where the special angle brackets denote an index range of  “ oN  consecutive values.” 
 
Remark 2   The DTFS coefficients 0 1, ,

oNX X −…  can be extended in either direction to form a 

sequence that repeats according to 
 , for all

om N mX X m+ =  

This follows from the calculation 

 
2

1
( )1

0
1

21

0

[ ]

[ ]

o
o o

o o

o No
o

N
j m N n

m N N
n

N jm n j n
N

n

m

X x n e

x n e e

X

π

ω

π

−
− +

+
=
− − −

=

=

=

=

∑

∑  

A consequence is that, for any integer k, 

 ( )o o o
o

jk n j N k n
k N kX e X eω ω+

+=  

Thus we can write 

 
1

0
[ ]

o
o o

o

N
jm n jm n

m m
m m N

x n X e X eω ω
−

= =< >
= =∑ ∑  

where again the angle-bracket notation indicates a summation over oN  consecutive values of the 
index m. 
 
Example  The signal [ ] sin(2 / 3)x n nπ=  is periodic with fundamental period 3oN = . We can 
calculate the DTFS coefficients as follows, though some details are omitted: 

 
2
3

2
3

2
1

0 3
0

2
1 1

1 3 2
0

2 21 1
2 3 2

0

sin(2 / 3) 0

sin(2 / 3)

sin(2 / 3)

n

j n
j

n

j n
j

n

X n

X n e

X n e

π

π

π

π

π

=

−

=

− −

=

= =

= =

= =

∑

∑

∑

 

However, there is a shortcut available. Simply write 

 
2 2
3 31 1

2 2sin(2 / 3) j n j n
j jn e e

π π
π −

= −  

and compare this to the expression 
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2
3

3
[ ] jm n

m
m

x n X e
π

=< >
= ∑  

Choosing the index range 3 1, 0,1< >= −   we see that  

 1 1
1 0 12 2, 0 ,j jX X X−
− = = =  

These two results can be reconciled by noting that 2 1 3 1X X X− + −= = . Indeed, the discrete-time 

phasor corresponding to the coefficient 2X  is 
2
32j ne
π

 and this is identical to the phasor 
2
3j ne
π−

 
corresponding to 1X− , as is easily verified. 
 
The first applet in the demonstration linked below permits you to explore the DTFS for signals 
with period 5. Select the “Input x[n]” option and set the speed to “slow.” Then you can sketch in a 
signal and “play” the DTFS frequency components. Other options permit you to enter the 
coefficients in the DTFS or enter the magnitude and phase spectra, and these will be useful in 
Section 9.2. (You will need to use MSIE 5.5+ with the MathPlayer plugin to use this link. See the 
main demonstrations page for other versions of the applet.) 
 

Discrete-Time Fourier Series 
 
9.2 Spectra of DT Signals 
 
For a real, periodic, DT signal [ ]x n , the frequency content of the signal is revealed by the 
coefficients in the DTFS expression 

 [ ] o

o

jm n
m

m N
x n X e ω

=< >
= ∑  

The following graphical displays of these coefficients define various spectra of [ ]x n . 
 
The magnitude spectrum of [ ]x n  is a line plot of | |mX  vs the index m, or vs omω  on a 
frequency axis. The phase spectrum of [ ]x n  is a similar plot of mX∠ , usually on an angular 
range from π−  to π . Finally, when the DTFS coefficients are all real, the amplitude spectrum of 

[ ]x n  is simply a plot of the coefficients mX . 
 

Example In Section 9.1 we computed the DTFS coefficients of [ ] ( 1)nx n = −  as 0 10, 1,X X= =  
and 2k kX X+ = , for other values of k. In this case the amplitude spectrum of the signal is simply 

 
or, in terms of a frequency axis, since oω π= , 

http://www.jhu.edu/~signals/dtfs-mathml4/newindex.htm


 112

 
Since π  corresponds to the highest frequency in discrete time, we note the obvious fact that [ ]x n  
is a high-frequency signal. Finally, for this simple case, the magnitude spectrum is identical to the 
amplitude spectrum, and the phase spectrum is zero. 
 
Example The second example in Section 9.1, a periodic train of width 12 1N +  clumps of unit-
height lollypops, is considerably more complicated, though again the DTFS coefficients are real. 
Choosing 1 2, 10oN N= = , the coefficients are given as an evaluation of an aliased sinc envelop 
by 

 sin(5 / 2)1
10 sin( / 2) / 5

m
m

X ω
ω ω π=

=  

The envelope function is zero when 5 / 2 kω π= , for nonzero integer k, that is, for 2 / 5kω π= . 
Sketching this envelope function yields the amplitude spectrum shown below. 

 
Correspondingly, the magnitude and phase spectra are shown below. 

 
 

 
While there is some high-frequency content in [ ]x n , in particular the component at frequency π , 
there is more low-frequency content as indicated by the components near the frequencies zero and 
2π . Finally, it should be noted that these spectra repeat outside the frequency ranges shown.  
 
To explore the notion of spectra in more detail, consult the demonstration Discrete-Time Fourier 
Series linked at the end of Section 9.1. 
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9.3  Operations on Signals 
 
Discrete-time, periodic signals are completely determined by the fundamental frequency, oω , or 
fundamental period, oN , and any oN  consecutive Fourier coefficients, say, 

0 1 1, ,...,
oNX X X − . Thus the signal is described in terms of its frequency content. This raises 

the possibility of interpreting various time-domain operations on signals as operations on the 
frequency-domain description. However, rather than give a lengthy treatment of this issue, we 
will simply discuss a few examples. 
 
Example 1  Given a signal 

 [ ] o

o

jk n
k

k N
x n X e ω

=< >
= ∑  

suppose a new signal is obtained by the index shift 
 [ ] [ ]ox n x n n= −�  
where on  is a fixed integer. Clearly a shift does not change periodicity, or the fundamental 
period, or fundamental frequency. Therefore we can compute the Fourier coefficients for [ ]x n�  
from the standard formula: 

 1 1[ ] [ ]o o
o o

o o

jk n jk n
k oN N

n N n N
X x n e x n n eω ω− −

=< > =< >
= = −∑ ∑

� �  

Changing the summation index from n  to om n n= − , 

 

( )1 1[ ] [ ]o o o o o
o o

o o

o o

jk m n jk n jk m
k N N

m N n N
jk n

k

X x m e e x n e

e X

ω ω ω

ω

− + − −

=< > =< >

−

= =

=

∑ ∑
�

 

Notice that the magnitude spectrum of the signal is unchanged by time shift, since, regardless of 
the integer value of k, 

 ˆ o ojk N
k k kX e X Xω−= =  

In simple cases, such as time-index shift, it is possible to ascertain the effect of the operation on 
the Fourier coefficients by inspection of the representation. Indeed, with [ ]x n  as given above, it 
is clear that 

 ( )[ ] [ ] o o o o o

o o

jk n n jk n jk n
o k k

k N k N
x n x n n X e e X eω ω ω− −

=< > =< >
= − = =∑ ∑�  

and we simply recognize the form of the expression and the corresponding Fourier coefficients 

kX
�

. 
 
Example 2  Suppose [ ] [ ]x n x n= −� . Again, the fundamental frequency does not change, and the 
Fourier coefficients for [ ]x n�  are given by 

 1 1[ ] [ ]o o
o o

o o

jk n jk n
k N N

n N n N
X x n e x n eω ω− −

=< > =< >
= = −∑ ∑

� �  

Changing the summation index to m n= −  gives 
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( ) ( )1 1[ ] [ ]o o
o o

o o

jk m j k n
k N N

m N m N

k

X x m e x m e

X

ω ω− − − −

=< > =< >

−

= =

=

∑ ∑
�

 

This conclusion also could be reached by inspection of the representation. 
 
Further discussion of operations on discrete-time signals can be found in the demonstration 

DTFS Properties 
 
 
 
9.4 DT LTI Frequency Response and Filtering 
 
For a stable DT LTI system with periodic input signal, the DTFS and the eigenfunction property 
provide a way to compute and interpret the response. If the unit-pulse response of the system is 

[ ]h n , we define the frequency response function of the system as 

 ( ) [ ] j n

n
H h n e ωω

∞ −

=−∞
= ∑  

This is a slight change in notation from Section 5.5 in that we show frequency as a variable. Note 
also that  

 
( 2 )( 2 ) [ ]

( )

j n

n
H h n e

H

ω πω π

ω

∞ − +

=−∞
+ =

=

∑
 

so in discrete time the frequency response function repeats every 2π  radians in frequency. 
 
If the input signal [ ]x n  is periodic, with fundamental period oN  and corresponding fundamental 
frequency oω , we can write 

 [ ] o

o

jk n
k

k N
x n X e ω

=< >
= ∑  

and the eigenfunction property gives 

 [ ] ( ) o

o

jk n
o k

k N
y n H k X e ωω

=< >
= ∑  

Thus the frequency response function of the system describes the effect of the system on various 
frequency components of the input signal. To display this effect, plots of  | ( ) |H ω  and  ( )H ω∠  
vs ω  can be given. Since these functions repeat with period 2π , we often show the plots for 
only this range, for example, for π ω π− < ≤ . 
 
Example  Suppose an LTI system has the unit pulse response 
 1 1

2 2[ ] [ ] [ 1]h n n nδ δ= + −  

Obviously the system is stable, and the frequency response function is 

 / 21 1
2 2( ) cos( / 2)j jH e eω ωω ω− −= + =  

The response of the system to an input of frequency oω , for example, 

http://www.jhu.edu/~signals/dtfsproperties2/indexdtfsprops2.htm
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 { }[ ] cos( ) Re oj n
ox n n e ωω= =  

is given by a now-standard calculation using the eigenfunction property: 

 { }[ ] Re ( ) | ( ) | cos( ( ))oj n
o o o oy n H e H n Hωω ω ω ω= = +∠  

In this case, 
 | ( ) | cos( / 2) ,H ω ω π ω π= − < ≤  
and from the plot below we see that the system is a low-pass filter. 

 
Example  Suppose an LTI system is described by the difference equation 
 [ ] [ 1] [ ]y n ay n bx n+ − =  
where, to guarantee stability, we assume | | 1a < . Then 

 [ ] ( ) [ ]nh n a bu n= −  
and the frequency response function is 

 0

1

( ) ( ) [ ] ( )

j

n j n n j n

n n
b

ae

H a bu n e b a e

ω

ω ωω

−

∞ ∞− −

=−∞ =

+

= − = −

=

∑ ∑
 

In this case, 

 
2

| | | | | |
|1 | (1 )(1 ) 1 2 cos( )

| ( ) | j j j

b b b
ae ae ae a a

H ω ω ω ω
ω − −+ + + + +

= = =  

If 0 1a< <  and 1b = , then the magnitude of the frequency response is shown below, and this 
system is a high-pass filter. 

 
 
Exercises 
 
1.  Compute the discrete-time Fourier series coefficients for the signals below and sketch the 
magnitude and phase spectra.. 
(a) [ ] 1 cos( / 3)x n nπ= +  
(b)     
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(c) 

 

(d) [ ] ( 4 1)
k

x n n kδ
∞

=−∞
= − −∑  

 
2.  For the sets of DTFS coefficients given below, determine the corresponding real, periodic 
signal [ ]x n . 

(a) 
1/ 2,

,
1/ 2,k o

k even
X

k odd
ω π

⎧
= =⎨−⎩

 

(b) 1/ 2, ,k oX for all k ω π= =  
(c)  0 1 2 3 4 5 61, 0, 1, 2, 1, 0, , / 3k k oX X X X X X X X ω π+= − = = = − = = = =  
 
3.  Suppose [ ]x n  is periodic with even fundamental period oN  and DTFS coefficients kX . If 

[ ]x n  also satisfies [ ] [ / 2]ox n x n N= − + , for all n, show that 0kX =  if k is even. 
 
4.  Given the fundamental period oN  and the magnitude and phase spectra as shown for a real, 
discrete-time signal, what is the signal? 
(a) 5oN =  

 
 
5.  If [ ]x n  has fundamental period oN , an even integer, and discrete-time Fourier series 
coefficients kX , what are the Fourier series coefficients for 



 117

(a) [ ] [ / 2]ox n x n N= +�  

(b) [ ] ( 1) [ ]nx n x n= −�  (Assume that o oN N=
�

 and give an example to show why this assumption 
is needed.) 
 
6.  For the LTI systems specified below, sketch the magnitude of the frequency response function 
and determine if the system is a low-pass or high-pass filter. 
(a) 1 1

2 2[ ] [ ] [ 1]h n n nδ δ= − −  

(b) 1
2[ ] [ ] ( ) [ ]nh n n u nδ= −  

(c) [ ] (1/ 2) [ ]nh n u n=  
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Notes for Signals and Systems 

 
10.1 Introduction to the CT Fourier Transform 
 
If ( )x t   is oT -periodic, we can write the Fourier series description 

 ( ) ojk t
k

k
x t X e ω∞

=−∞
= ∑  (10.1) 

 
where 2 /o oTω π=  and 

 
/ 2

1

/ 2
( ) , 0, 1, 2,

o
o

o
o

T
jk t

k T
T

X x t e dt kω−

−
= = ± ±∫ …  (10.2) 

 
Consider what happens as we let oT  grow without bound. In a sense, ( )x t  approaches an 
aperiodic signal, and in any given frequency range, say − 1 ≤ ω ≤ 1, there are more and more 
frequency components of x(t) since oω  becomes smaller and smaller. Therefore, from a 
frequency content viewpoint, perhaps it is not surprising that a truely aperiodic signal typically 
contains frequency components at all frequencies, not just at integer multiples of a fundamental 
frequency. 
 
Analysis of a limit process by which a periodic signal approaches an aperiodic signal, as 

oT →∞ ,  is difficult to undertake. Therefore we skip mathematical details and simply provide a 
motivational argument leading to a description of the frequency content of aperiodic signals.  
 
Define, for all ω, the complex-valued function ( )X ω  by 

 
/ 2

/ 2
( ) ( )

o

o

T
j t

T
X x t e dtωω −

−
= ∫  (10.3) 

The Fourier series coefficients (10.2) for ( )x t  can be written as evaluations of this “envelope” 
function, 

1 1
2( ) ( )

o
k o o oTX X k X kπω ω ω= =  

so we can write 

 1
2( ) ( ) ojk t

o o
k

x t X k e ω
π ω ω

∞

=−∞
= ∑  

 
Letting oT  grow without bound, that is, letting oω shrink toward 0, we can view oω  as a 
differential dω  and consider that okω  takes on the character of a real variable, ω . That is, the 
difference ( 1) o o ok kω ω ω+ − = shrinks toward 0 so that any given real number can be 
approximated by okω , for suitable k. Then the sum transfigures to an integral, yielding 

 1
2( ) ( ) j tx t X e dω
π ω ω

∞

−∞
= ∫  (10.4) 
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In this expression, since we let oT →∞ , (10.3) becomes 

 ( ) ( ) j tX x t e dtωω
∞

−

−∞
= ∫  (10.5) 

 
The function ( )X ω  is defined as the Fourier transform of ( )x t , and in a very useful sense it 
describes the frequency content of the aperiodic signal. Indeed, mathematically, ( )x t  is given  by 
the inverse Fourier transform expression (10.4), which is analogous to the expression of a oT -
periodic signal in terms of its Fourier series. 
 
To perform a sanity check on these claims of a transformation and an inverse transformation, 
suppose that given ( )x t  we compute 

 ( ) ( ) jX x e dωτω τ τ
∞

−

−∞
= ∫  

where we have used a different name for the integration variable in order to avoid a looming 
notational collision. Substituting this into the right side of (10.4) gives 

1 1
2 2( ) ( )j t j j tX e d x e d e dω ωτ ω
π πω ω τ τ ω

∞ ∞ ∞
−

−∞ −∞ −∞
=∫ ∫ ∫  

Interchanging the order of integration gives 

 ( )1
2 ( ) j tx e d dω τ
π τ ω τ

∞ ∞
−

−∞ −∞
∫ ∫  

In this expression we recognize that  

 ( ) 2 ( )j te d tω τ ω π δ τ
∞

−

−∞
= −∫  

from Special Property 2 in Section 2.2. Then the integration with respect to τ   is evaluated by the 
sifting property to give 

 ( ) 2 ( ) ( )x t d x tτ πδ τ τ
∞

−∞
− =∫  

In other words, taking the Fourier transform and then the inverse transform indeed returns the 
original signal. 
 
Immediate questions are: When is ( )X ω  a meaningful representation for ( )x t ? Are standard 
operations on ( )x t  easy to interpret as operations on ( )X ω ? Before addressing these, we work a 
few examples. 
 

Example For 3( ) ( )tx t e u t−= ,  

 

3 (3 )

0

1( ) ( )
03

1
3

j t t j t j tX x t e dt e e dt e
j

j

ω ω ωω
ω

ω

∞ ∞
− − − − +

−∞

∞−
= = =

+

=
+

∫ ∫
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It is important to note that the evaluation at t = ∞  yields zero. For example, if we change the sign 
of the exponent in the signal, the Fourier transform would not exist. 
 
In fact the Fourier transform ( )X ω  describes the frequency content of the signal ( )x t , and we 
display this content using the following, familiar plots. The magnitude spectrum of a signal ( )x t  
is a plot of  | ( ) |X ω  vs ω , and the phase spectrum is a plot of ( )X ω∠  vs ω . If ( )X ω  is a 
real-valued function, sometimes we plot the amplitude spectrum of the signal as ( )X ω  vs ω . 
The magnitude spectrum or amplitude spectrum of a signal display the frequency content of the 
signal. For the example above, 

 1
2

1| ( ) | , ( ) tan ( / 3)
9

X Xω ω ω
ω

−= ∠ = −
+

 

 
and the magnitude and phase spectra are shown below. 

 
Remark  The symmetry properties of the magnitude and phase spectra of a real signal ( )x t  are 
easy to justify in general from the fact that 

 
( )

( ) ( ) [ ( ) ] ( )

( ) ( )

j t j t j t

j t

X x t e dt x t e dt x t e dt

x t e dt X

ω ω ω

ω

ω

ω

∗∞ ∞ ∞
∗ − − ∗

−∞ −∞ −∞
∞

− −

−∞

⎡ ⎤
= = =⎢ ⎥
⎢ ⎥⎣ ⎦

= = −

∫ ∫ ∫

∫

 

This gives ( ) ( )X Xω ω− =  and ( ) ( )X Xω ω∠ − = −∠ , and thus the magnitude spectrum is an 
even function of ω , while the phase spectrum is an odd function of ω . 
 
Example   A simple though somewhat extreme example is the unit impulse, ( ) ( )x t tδ= . The 
sifting property immediately gives 

 ( ) ( ) 1j tX x t e dtωω
∞

−

−∞
= =∫  

In this case the magnitude (or amplitude) spectrum of the signal is a constant, indicating that the 
unit impulse is made up of equal amounts of all frequencies! 
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Example   Consider the rectangular pulse signal shown below. 

 
The Fourier transform computation involves a bit of work to put the answer in a nice form, but 
the calculations are not unfamiliar: 

 

1

1

1 1
1

1

1

1
1 1

1 1

1( ) ( )

1 ( ) 2 sin( )

2 sinc( / )

T
j t j t j t

T

j T j T
T

T
X x t e dt e dt e

Tj

e e T T
j
T T

ω ω ω

ω ω
ω

ω
ω

ω
ω

ω π

∞
− − −

−∞ −

−

−
= = =

−

= − =

=

∫ ∫

 

Thus the amplitude spectrum of ( )x t  is 

 
As with Fourier series calculations, if the Fourier transform can be written as a real function, then 
it is important to express it in real form. 
 
Convergence Issues  It is difficult to explicitly characterize the class of signals for which the 
Fourier transform is well defined. Furthermore, the uniqueness of the Fourier transform for a 
given signal is an important issue – to each signal ( )x t  there should correspond exactly one 

( )X ω . (This neglects trivial changes in the signal, or the transform, for example adjusting the 
value of  ( )x t  at isolated values of t. Such a change does not effect the result of the integration 
leading to the transform.) There are various sufficient conditions that can be stated for a signal to 
have a unique Fourier transform, and we present only the best known of these. 
 
Dirichlet Condition  Suppose a signal ( )x t  is such that 

(a)  ( )x t  is absolutely integrable, that is,  | ( ) |x t dt
∞

−∞
< ∞∫ , 

(b)  ( )x t  has no more than a finite number of minima and maxima in any finite time interval, and 
(c)  ( )x t  has no more than a finite number of discontinuities in any finite time interval, and these 
discontinuities are finite. 
Then there exists a unique Fourier transform ( )X ω  corresponding to ( )x t . 
 
It is important to remember that this is a sufficient condition, and there are signals that do not 
satisfy the condition yet have a unique Fourier transform. For example, the unit impulse would be 
thought of as having an infinite discontinuity at 0t = , and yet the sifting property gives a Fourier 
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transform. Indeed, we can check the calculation by applying the inverse transform. With 
( ) 1X ω = , we compute 

 1 1
2 2( ) ( ) ( )j t j tx t X e d e d tω ω
π πω ω ω δ

∞ ∞

−∞ −∞
= = =∫ ∫  

where we have used again Special Property 2 from Section 2.2, that is, 
 

 2 ( )j te d tω ω π δ
∞

−∞
=∫  

 
Example As an additional example, we can use the special property with the roles of t and ω  
interchanged to compute the Fourier transform of ( ) 1x t = : 

 ( )( ) 2 ( ) 2 ( )j t j tX e dt e dtω ωω πδ ω πδ ω
∞ ∞

− −

−∞ −∞
= = = − =∫ ∫  

This indicates that all the frequency content in the signal is concentrated at zero frequency, a 
reasonable conclusion. A quick check of the inverse transform reassures: 

 
1 1

2 2( ) ( ) 2 ( )

1

j t j tx t X e d e dω ω
π πω ω πδ ω ω

∞ ∞

−∞ −∞
= =

=

∫ ∫  

Indeed, one approach to computing a Fourier transform when the Dirichlet condition is not 
satisfied or generalized functions might be involved is to guess the transform and verify by use of 
the inverse transform formula. 
 
10.2 Fourier Transform for Periodic Signals 
 
If ( )x t  is oT -periodic, then it is clear that the Fourier transform 

 ( ) ( ) j tX x t e dtωω
∞

−

−∞
= ∫  

does not exist in the usual sense, because of the failure of the integral to converge. However, we 
can take an indirect approach and use notions of generalized functions to extend the Fourier 
transform to periodic signals in a way that captures the Fourier series expression in a fashion 
consistent with ordinary Fourier transforms. The Fourier series expression 

 ( ) ojk t
k

k
x t X e ω∞

=−∞
= ∑  

indicates that the key is to develop the Fourier transform of the complex signal 

 ( ) oj tx t e ω=  
One approach is to use the Special Property 2 in Section 2.2 again: 

 
( )( ) 2 ( )

2 ( )

o oj t j tj t
o

o

X e e dt e dtω ω ωωω πδ ω ω

πδ ω ω

∞ ∞
−−

−∞ −∞
= = = −

= −

∫ ∫  

That this is reasonable is easily verified using the inverse Fourier transform, with evaluation by 
the sifting property. 
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Following this calculation, we can compute the Fourier transform of a signal expressed by a 
Fourier series in a straightforward manner: 

 

( ) ( )

2 ( )

o

o

jk tj t j t
k

k

jk t j t
k k o

k k

X x t e dt X e e dt

X e e dt X k

ωω ω

ω ω

ω

π δ ω ω

∞ ∞ ∞− −

=−∞−∞ −∞
∞∞ ∞−

=−∞ =−∞−∞

= =

= = −

∑∫ ∫

∑ ∑∫

 

In words, to compute the Fourier transform of a periodic signal, first compute the Fourier series 
coefficients, kX , and then simply substitute this data into the ( )X ω  expression above. 
 
Of course the Fourier transform expression is invertible by inspection, in the sense that the 
Fourier series for ( )x t  can be written by inspection from ( )X ω . From another viewpoint, we 
essentially have built the Fourier series into the transform. We need to reformat the notions of 
spectra of ( )x t  in consonance with this new framework, but that is easy. For any value of ω , at 
most one summand in the expression for ( )X ω  can be nonzero. Because the summands are non-
overlapping in this sense, the magnitude of the sum is the sum of the magnitudes. Instead of a line 
plot, however, the magnitude spectrum (or amplitude spectrum, if every kX  is real) becomes a 
plot of impulse functions, occurring at integer multiples of the fundamental frequency, labeled 
with the impulse-area magnitudes. That is, 

 
The phase spectrum computes in a similar fashion, since the angle of a sum of non-overlapping 
terms is the sum of the angles. Therefore the phase spectrum is interpreted as a line plot of the 
angles of the areas of impulses vs frequency. That is, the phase spectrum has exactly the same 
form as in the context of Fourier series representations. 
 
Example  A couple of special cases are interesting to note, based on the Fourier transform of a 
phasor. First, for 

 1 1
2 2( ) cos( ) o oj t j t

ox t t e eω ωω −= = +  

 we have 
 ( ) ( ) ( )o oX ω πδ ω ω πδ ω ω= − + +  
Second, for ( ) sin( )ox t tω= ,  
 ( ) ( ) ( )o oX j jω πδ ω ω πδ ω ω= − − + +  
Example  Other approaches to computing the Fourier transform of periodic signals can give 
“correct,” but difficult to interpret results. For the signal 

 ( ) ( )
k

x t t kδ
∞

=−∞
= −∑  

we directly compute 
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( ) ( ) ( )j t j t

k k

j k

k

X t k e dt t k e dt

e

ω ω

ω

ω δ δ
∞ ∞∞ ∞− −

=−∞ =−∞−∞ −∞
∞ −

=−∞

= − = −

=

∑ ∑∫ ∫

∑

 

On the other hand, the recommended procedure is to compute the Fourier series data for ( )x t , 
which easily yields 2oω π=  and  1kX = , for all k. Then by inspection we obtain the Fourier 
transform 

 ( ) 2 ( 2 )
k

X kω π δ ω π
∞

=−∞
= −∑  

Needless to say, it is difficult to show by elementary means that these two expressions for ( )X ω  
are the same. In any case, we always prefer the second. 
 
10.3 Properties of the Fourier Transform  
 
We now consider a variety of familiar operations on a signal ( )x t , and interpret the effect of 
these operations on the corresponding Fourier transform ( )X ω . Of course, existence of the 
Fourier transform is assumed. Furthermore, we should verify that each operation considered 
yields a signal that has a Fourier transform. Often this is obvious, and will not be mentioned, but 
care is needed in a couple of cases. The proofs we offer of the various properties are close to 
being rigorous for ordinary signals, for example those satisfying the Dirichlet condition. For 
generalized functions, or signals such as periodic signals that have generalized-function 
transforms, further interpretation typically is needed. 
 
Throughout we use the following notation for the Fourier transform and inverse Fourier 
transform, where F denotes a “Fourier transform operator:” 

 
1 1

2

( ) [ ( )] ( )

( ) [ ( )] ( )

j t

j t

X F x t x t e dt

x t F X X e d

ω

ω
π

ω

ω ω ω

∞
−

−∞
∞

−

−∞

= =

= =

∫

∫

 

Linearity  If [ ( )] ( )F x t X ω=  and [ ( )] ( )F z t Z ω= , then for any constant a, 
 [ ( ) ( )] ( ) ( )F x t a z t X a Zω ω+ = +  
This property follows directly from the definition. 
 
Time Shifting If [ ( )] ( )F x t X ω= , then for any constant ot , 

 [ ( )] ( )oj t
oF x t t e Xω ω−− =  

The calculation verifying this is by now quite standard. Begin with 

 [ ( )] ( ) j t
o oF x t t x t t e dtω

∞
−

−∞
− = −∫  

and change integration variable from t to ot tτ = −  to obtain 
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( )[ ( )] ( ) ( )

( )

o o

o

j t j t j
o

j t

F x t t x e dt e x e dt

e X

ω τ ω ωτ

ω

τ τ

ω

∞ ∞
− + − −

−∞ −∞
−

− = =

=

∫ ∫
 

 
Time Scaling If [ ( )] ( )F x t X ω= , then for any constant 0a ≠ , 

 1
| |[ ( )] ( )a aF x at X ω=  

This is another familiar calculation, beginning with 

 [ ( )] ( ) j tF x at x at e dtω
∞

−

−∞
= ∫  

 
 though the cases of positive and negative a are conveniently handled separately. If 0a > , the 
variable change from t to atτ = yields 

 
1 1

1

[ ( )] ( ) ( )

( )

a aj j
a a

a a

F x at x e d x e d

X

τ ωω τ

ω

τ τ τ τ
∞ ∞− −

−∞ −∞
= =

=

∫ ∫
 

If 0a < , then it is convenient to write | |a a= −  and use the variable change | |a tτ = −  as 
follows: 

 
| | 1 1

| | | |

1
| |

[ ( )] ( ) ( )

( )

a a
j j

a a

a a

F x at x e d x e d

X

τ ωω τ

ω

τ τ τ τ−
−∞ ∞− −

−
∞ −∞

= =

=

∫ ∫
 

Finally we note that both cases are covered by the claimed formula. 
 
Example  An interesting case is 1a = − , and the scaling property yields 
 [ ( )] ( )F x t X ω− = −  
As noted previously, ( ) ( )X Xω ω− = , and therefore we notice the interesting fact that a signal 
and its time reversal have the same magnitude spectra! 
 
Example  When both a scale and a shift are involved, the safest approach is to work out the result 
from the basic definition. To illustrate, the Fourier transform of (3 2)x t −  can be computed in 
terms of the transform of ( )x t  via the variable change 3 2tτ = −  as shown in the following: 

 

2
3

2
3 3

2
3

1
3

1
3

1
3 3

[ (3 2)] (3 2) ( )

( )

( )

jj t

j j

j

F x t x t e dt x e d

e x e d

e X

τ

ω

ωω

ω τ

ω ω

τ τ

τ τ

+∞ ∞ −−

−∞ −∞
∞− −

−∞

−

− = − =

=

=

∫ ∫

∫  
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Differentiation If [ ( )] ( )F x t X ω= ,  and the time-derivative signal ( )x t�  has a Fourier transform, 
then 
 [ ( )] ( )F x t j Xω ω=�  
To justify this property, we directly compute the transform, using integration-by-parts: 

 
[ ( )] ( ) ( ) ( )( )

( )

j t j t j tF x t x t e dt x t e x t j e d

j X

ω ω ωω τ

ω ω

∞ ∞
− − −

−∞ −∞

∞
= = − −

−∞

=

∫ ∫� �
 

To make this rigorous, we need to justify the fact that ( )x t  approaches zero as t →±∞ . When 
( )x t  satisfies the Dirichlet condition, the fact is clear, though in other cases it is less so. 

 
Remark When we apply this property to signals that are not, strictly speaking, differentiable, 
generalized calculus must be used. For example, beginning with the easily-verified transform 

 
1[ ( )] [ ( )]

1
tF x t F e u t

jω
−= =

+
 

the differentiation property gives   

 [ ( )]
1

jF x t
j
ω
ω

=
+

�  

To check this, we first compute ( )x t� , 

 
( )( ) ( ) ( ) ( )

( ) ( )

t t td
dt

t

x t e u t e u t e t

e u t t

δ

δ

− − −

−

= = − +

= − +

�
 

Then the Fourier transform is easy by linearity: 

 
1[ ( )] 1

1 1
jF x t

j j
ω

ω ω
−

= + =
+ +

�  

Integration  If [ ( )] ( )F x t X ω= , then 

 1( ) ( ) (0) ( )
t

jF x d X Xωτ τ ω π δ ω
−∞

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∫  

This property is difficult to derive, but we can observe that the running integral is the inverse of 
differentiation, except for an undetermined additive constant. Thus the first term is expected, and 
the second term accounts for the constant. 
 
Example  The relationships 

 [ ( )] 1 , ( ) ( )
t

F t u t dδ δ τ τ
−∞

= = ∫  

and the integration property give the Fourier transform of the unit-step function as 
 1[ ( )] ( )jF u t ω πδ ω= +  

We can check this with the differentiation property (using generalized differentiation): 

 
1[ ( )] [ ( )] ( ) 1 ( )

1
jF t F u t j jωδ ω πδ ω πωδ ω⎡ ⎤= = + = +⎢ ⎥⎣ ⎦

=

�
 

though the rule for multiplying an impulse with an ordinary function must be invoked. 
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Example  The properties we are discussing sometimes can be used in clever ways to compute 
Fourier transforms based on a small table of known transforms. However, sometimes the answer 
can appear in a form where interpretation is required to simplify the result. To illustrate, consider 
the simple rectangular pulse, 
 ( ) ( 1) ( 1)x t u t u t= + − −  
Using linearity and time-shift properties, we can immediately write 

 

1 1

1

2sin( )

( ) ( ) ( )

( )

2sinc( / )

j j
j j

j j j j
j

X e e

e e e e

ω ω
ω ω

ω ω ω ω
ω

ω
ω

ω πδ ω πδ ω

π δ ω

ω π

−

− −

⎡ ⎤ ⎡ ⎤= + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦

=

=

 

This agrees with our earlier conclusion, though, again, application of the rule for multiplying and 
impulse function by an ordinary function is involved. 
 
The effect of various operations on a signal and on the magnitude and phase spectra of the signal 
can be explored using the Web demonstration below. 
 
CTFT Properties 
 
 
10.4 Convolution Property and Frequency Response of LTI Systems 
 
Perhaps the most important property of the Fourier transform is that convolution in the time 
domain becomes multiplication of transforms. This means that for many purposes it is convenient 
to view LTI systems in the Fourier (frequency) domain. 
 
Convolution  If ( )x t  and ( )h t  have Fourier transforms ( )X ω  and ( )H ω , then 
 [( )( )] ( ) ( )F x h t X Hω ω∗ =  
A direct calculation involving a change in order of integration can be used to establish this 
property: 

 

[( )( )] ( )( )

( ) ( )

( ) ( )

j t

j t

j t

F x h t x h t e dt

x h t d e dt

x h t e dt d

ω

ω

ω

τ τ τ

τ τ τ

∞
−

−∞
∞ ∞

−

−∞ −∞

∞ ∞
−

−∞ −∞

∗ = ∗

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫ ∫

∫ ∫

 

We can change the integration variable in the inner integration from t  to tσ τ= −  to obtain 

 ( )[( )( )] ( ) ( ) jF x h t x h e d dω σ ττ σ σ τ
∞ ∞

− +

−∞ −∞

⎡ ⎤
∗ = ⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  

and factoring the exponential in τ  out of the inner integration gives 

http://www.jhu.edu/~signals/ctftprops/indexCTFTprops.htm
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 [( )( )] ( ) ( ) ( ) ( )jF x h t x e H d X Hωττ ω τ ω ω
∞

−

−∞
∗ = =∫  

  
Remark  We did not check that the convolution of Fourier transformable signals yields a Fourier 
transformable signal. This in fact is true for signals that satisfy the Dirichlet condition, but 
difficulties can arise when some of our signals with generalized-function transforms are involved. 
For example, the transforms of the signals ( ) 1x t =  and ( ) ( )h t u t=  are 

 1( ) 2 ( ) , ( ) ( )jX H ωω πδ ω ω πδ ω= = +  

The convolution ( )( )x h t∗  is undefined in this case. Fortunately the product of the transforms 
indicates that something is amiss in that the square of  an impulse function at 0ω =  appears, and 
also an impulse multiplied by a function that is dramatically discontinuous at 0ω = . But such a 
clear indication is not always provided. 
 
Example  For a stable LTI system, the eigenfunction property states that the response to 

( ) oj tx t e ω=  is   ( ) ( ) oj t
oy t H e ωω= , where 

 ( ) ( ) oj t
oH h t e dtωω

∞
−

−∞
= ∫  

In terms of Fourier transforms, the convolution property implies that the response to 
( ) 2 ( )oX ω πδ ω ω= −  is 

 ( ) ( )2 ( ) ( )2 ( )o o oY H Hω ω πδ ω ω ω πδ ω ω= − = −  
where ( )H ω  is the Fourier transform of the unit-impulse response ( )h t . This is simply the 
eigenfunction property in terms of Fourier transforms – the output transform is a constant 
(typically complex) multiple of the input transform. 
 
This example is easily extended to represent the response of a stable, LTI system to a periodic 
input signal. We view the periodic input signal in terms of its Fourier series, 

 ( ) ojk t
k

k
x t X e ω∞

=−∞
= ∑  

Then we immediately have 

 ( ) 2 ( )k o
k

X X kω π δ ω ω
∞

=−∞
= −∑  

and 

 

( ) ( ) ( ) 2 ( ) ( )

2 ( ) ( )

k o
k

k o o
k

Y H X X H k

X H k k

ω ω ω π ω δ ω ω

π ω δ ω ω

∞

=−∞
∞

=−∞

= = −

= −

∑

∑
 

The inverse Fourier transform gives 

 ( ) ( ) ojk t
k o

k
y t X H k e ωω

∞

=−∞
= ∑  

which typically is the Fourier series representation of the output signal. 
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If an LTI system is stable, then the frequency response function ( )H ω , which we now recognize 
as the Fourier transform of the unit-impulse response, is well defined, and we can view the input-
output behavior of the system in terms of 
 ( ) ( ) ( )Y H Xω ω ω=  
Then the magnitude spectrum of the output signal is related to the magnitude spectrum of the 
input signal by 
 | ( ) | | ( ) | | ( ) |Y H Xω ω ω=  
Thus the magnitude of the frequency response function can be viewed as a frequency-dependent 
gain of the system. 
 
Example  An LTI system is said to exhibit distortionless transmission if the output signal is 
simply an amplitude scaled (positively)  and time-delayed version of the input signal. That is, 
there are positive constants a and ot  such that for any input ( )x t  the output signal is 

( ) ( )oy t a x t t= − . That is, assuming the input signal has a Fourier transform, 

( ) ( )oj tY a e Xωω ω−= , and thus we see that for distortionless transmission the frequency 
response function has the form 

 
( )( )
( )

oj tYH a e
X

ωωω
ω

−= =  

Often this is stated as the frequency response function must have “flat magnitude” and phase that 
is a linear function of frequency, at least for the frequency range of interest. 
 
Example  An ideal filter should transmit without distortion all frequencies in the specified 
frequency range, and remove all frequencies outside this range. For example, 
and ideal low-pass filter should have the frequency response function  

 , | |( )
0 , | |

oj t
c

c

eH
ω ω ωω

ω ω

−⎧⎪ ≤= ⎨
>⎪⎩

 

In this expression, 0cω >  is the cutoff frequency, and for convenience we have set the constant 
gain to unity. To interpret this filter in the time domain, we can compute the impulse response via 
the inverse Fourier transform: 

 

( )1 1
2 2( ) ( )

sinc[ ( ) / ]

c
o

c

c

j t tj t

c o

h t H e d e d

t t

ω
ωω

π π
ω

ω
π

ω ω ω

ω π

∞
−

−∞ −
= =

= −

∫ ∫
 

A key point is that no matter how large we permit the delay time ot  to be, this unit-impulse 
response is not right sided, and thus the ideal low-pass filter is not a causal system. Despite this 
drawback, the ideal low-pass filter remains a useful concept. 
 
Example  The LTI system described by 
 ( ) ( ) ( )c cy t y t x tω ω+ =�  
with 0cω > , is a low-pass filter that can be implemented by an R-C circuit. Simple, familiar 
calculations give 
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 ( ) c

c
H

j
ωω

ω ω
=

+
 

Expressing this frequency response function in polar form, as 

 
1tan ( / )

2 2
( ) cjc

c

H e ω ωωω
ω ω

−−=
+

 

the characteristics of this filter can be compared to the ideal low-pass filter via the magnitude and 
phase plots shown below. (For the ideal filter, we choose /(4 )o ct π ω=  to obtain an angle of 

/ 4π−  at cω ω= , for illustration.) 

 

 
Clearly the first-order differential equation is a rather poor approximation to an ideal filter, but 
higher-order differential equations can perform closer to the ideal. 
 
10.5 Additional Fourier Transform Properties  
 
Frequency-Domain Convolution If ( )x t  and ( )z t  have Fourier transforms ( )X ω  and ( )Z ω , 
then  

 1
2[ ( ) ( )] ( ) ( )F x t z t X Z dπ ξ ω ξ ξ

∞

−∞
= −∫  

That is, the Fourier transform of a product of signals is the convolution of the transforms: 
1

2 ( )( )X Zπ ω∗ . 

 
To prove this property, we directly compute the inverse transform of 1

2 ( )( )X Zπ ω∗ : 

 

1 1 1 1
2 2 2

1 1
2 2

[ ( )( )] ( ) ( )

( ) ( )

j t

j t

F X Z X Z d e d

X Z e d d

ω
π π π

ω
π π

ω ξ ω ξ ξ ω

ξ ω ξ ω ξ

∞ ∞
−

−∞ −∞
∞ ∞

−∞ −∞

∗ = −

= −

∫ ∫

∫ ∫

 

Changing the variable of integration in the inner integral from ω  to η ω ξ= −  gives 
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1 ( )1 1 1
2 2 2

1 1
2 2

1
2

[ ( )( )] ( ) ( )

( ) ( )

( ) ( )

( ) ( )

j t

j t j t

j t

F X Z X Z e d d

X e Z e d d

X e z t d

x t z t

η ξ
π π π

ξ η
π π

ξ
π

ω ξ η η ξ

ξ η η ξ

ξ ξ

∞ ∞
− +

−∞ −∞
∞ ∞

−∞ −∞
∞

−∞

∗ =

=

=

=

∫ ∫

∫ ∫

∫

 

 
Example The most important application of this property is the so-called modulation or frequency 

shifting property. If ( ) oj tz t e ω= , then the sifting property of impulses gives 

 
1

2[ ( )] ( ) 2 ( )

( )

oj t
o

o

F e x t X d

X

ω
π ξ π δ ω ξ ω ξ

ω ω

∞

−∞
= − −

= −

∫  

We can illustrate this property by considering the structure of AM radio signals. 
 
Amplitude Modulated Signals  An amplitude modulated (AM) signal of the most basic type has 
the form 
 ( ) [1 ( )]cos( )cx t k m t tω= +  
where cos( )ctω  is called the carrier signal, ( )m t  is called the message signal, and the constant 
k  is called the modulation index. We assume that the modulation index is such that 
1 ( ) 0k m t+ ≥ , for all t . We also assume that the message signal is bandlimited by mω , where 

m cω ω� . That is, the Fourier transform ( )M ω  of the message signal is zero outside the 
frequency range m mω ω ω− ≤ ≤ . These are standard situations in practice, and we will represent 
the magnitude spectrum of the message signal as shown below. 

 
Under these assumptions, ( )x t  has the form of a high-frequency (rapidly oscillating) sinusoid 
with a relatively slowly-varying amplitude envelope. We could sketch a typical case in the time 
domain, but it would be rather uninformative as to the special properties of AM signals that make 
them so useful in communications. To reveal these properties, we turn to the frequency domain 
via the Fourier transform. 
 
Using the Fourier transform  
 [cos( )] ( ) ( )c c cF tω π δ ω ω π δ ω ω= − + +  
and the frequency-domain convolution 
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1

2

1 1
2 2

[ ( )cos( )] ( )[ ( ) ( )]

( ) ( )

c c c

c c

F m t t M d

M M

πω ξ π δ ω ξ ω π δ ω ξ ω ξ

ω ω ω ω

∞

−∞
= − − + − +

= − + +

∫
 

we conclude that the transform of the AM signal is 
 2 2( ) ( ) ( ) ( ) ( )k k

c c c cX M Mω π δ ω ω π δ ω ω ω ω ω ω= − + + + − + +  

To see the properties of an AM signal, we consider the magnitude spectrum, | ( ) |X ω . Typically 
it is difficult to compute the magnitude of a sum, but because of the assumptions on the highest 
message frequency and carrier frequency, at most one term in the sum is nonzero at every 
frequency, except at the carrier frequency. (At the carrier frequency, we have an impulse and an 
ordinary value, and we can display this situation graphically in the obvious way.) Because of this 
special structure of the terms, the magnitude of this particular sum essentially is the sum of the 
magnitudes, and we obtain 

 
From this plot is clear that AM modulation is used to shift the spectral content of a message to a 
frequency range reserved for a particular transmitter. By assigning different carrier frequencies to 
different transmitters, with a separation of at least 2 mω  in the different carriers, the messages are 
kept distinct. 
 
Parseval’s Theorem  If ( )x t  is a real energy signal with Fourier transform ( )X ω , then the total 
energy of the signal is given by 

 2 21
2( ) | ( ) |x t dt X dπ ω ω

∞ ∞

−∞ −∞
=∫ ∫  

To establish this result, we substitute the inverse Fourier transform expression for one of the 
( )x t ’s in the time-domain energy expression to obtain 

 2 1 1
2 2( ) ( ) ( ) ( ) ( )j t j tx t dt x t X e d dt X x t e dt dω ω
π πω ω ω ω

∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞
= =∫ ∫ ∫ ∫ ∫  

 
The inner integral in this expression can be recognized as the conjugate of the Fourier transform 

of ( )x t , ( )X ω∗ , and therefore 

 2 21 1
2 2( ) ( ) ( ) | ( ) |x t dt X X d X dπ πω ω ω ω ω

∞ ∞ ∞
∗

−∞ −∞ −∞
= =∫ ∫ ∫  

The importance of Parseval’s theorem is that energy can be associated with frequency content. 
For example, 
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3

2

3
| ( ) |X dω ω

−
∫  

is the portion of the energy of ( )x t  that resides in the frequency band 3 3ω− ≤ ≤ . 
 
Duality Property  If ( )x t  has Fourier transform ( )X ω , then 
 [ ( )] 2 ( )F X t xπ ω= −  
 
This property can be recognized from an inspection of the Fourier and inverse Fouier transform 
expression. However, we will be pedantic and list out the appropriate sequence of variable 
changes. Beginning with 

 1
2( ) ( ) j tx t X e dω
π ω ω

∞

−∞
= ∫  

change the variable of integration from ω   to t
�

 and then replace the variable t  by ω− � . This 
gives 

 1
2( ) ( ) j tx X t e dtω
πω

∞
−

−∞
− = ∫

��� ��  

Now change variables from ω�  to ω , and t
�

 to t  (erase the hats ) to obtain 

 1 1
2 2( ) ( ) [ ( )]j tx X t e dt F X tω
π πω

∞
−

−∞
− = =∫  

One use of the duality property is in reading tables of Fourier transforms backwards to generate 
additional Fourier transforms! 
 
Examples Since [ ( )] 1F tδ = , the duality property gives [1] 2 ( ) 2 ( )F π δ ω π δ ω= − = . A more 
usual example is that since 

 1( ) 1
tF e u t jω

−⎡ ⎤ = +⎣ ⎦  

the duality property gives 

 1 2 ( )1F e ujt
ωπ ω⎡ ⎤ = −⎢ ⎥+⎣ ⎦

 

Thus we see that since many Fourier transforms are complex, the duality property often provides 
Fourier transforms for complex time signals. 
 
10.6  Inverse Fourier Transform  
 
Given a Fourier transform, ( )X ω , one approach to computing the corresponding time signal is 
via the inverse transform formula, 

 1
2( ) ( ) j tx t X e dω
π ω ω

∞

−∞
= ∫  

Another approach is table lookup, making use of the wide collection of tables of Fourier 
transform pairs that have been established. However, it turns out that in many situations ( )X ω  
can be written in the form of a proper rational function in the argument ( )jω , where the term 
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proper refers to a rational function in which the degree of the numerator polynomial is no greater 
than the degree of the denominator polynomial. That is,  

 
1

1 0
1

1 0

( ) ( )( )
( ) ( )

n n
n n

n n
n

b j b j bX
j a j a
ω ω

ω
ω ω

−
−

−
−

+ + +
=

+ + +

"
"

 

This general form is not in the tables, but we can use partial-fraction expansion to write ( )X ω  as 
a sum of the simpler rational functions that are listed in all tables. The linearity property and table 
lookup then yield the corresponding ( )x t . To explain some of the mechanics, and mild subtleties 
that arise, it is convenient to consider simple examples. The first example addresses the issue that 
often a Fourier transform does not present itself in the nicest form. 
 
Example 1  Given 

 2 2 3
1( )

2 ( )
X

a j a
ω

ω ω ω
=
− + −

 

we can use the substitution ( ) /k k kj jω ω=  as follows: 

 
2 3

2 3

3 2 2( ) ( ) ( )2

1 1( )
( ) 2 ( ) ( )2 j j j

jj j

X
j a j a ja j aω ω ω

ω
ω ω ω

= =
⎛ ⎞ + +− + −⎜ ⎟
⎝ ⎠

 

 
 
To perform a partial fraction expansion, the denominator polynomial must be put in factored 
form. Any of the partial-fraction expansion methods can be used, and for many it is convenient to 
switch from the argument ( )jω  to a more convenient notation. Also, in the table lookup phase, 
some creativity might be required to recognize the inverse transforms of various terms. 
 
Example 2  To write the Fourier transform in Example 1 in more convenient notation, we 
substitute s  for ( )jω , and proceed as follows (assuming 0a ≠ ): 

 
2 2

3 2 2 2 2
1 1 1/ 1/ 1/

2 ( ) ( )
a a a
s s as a s a s s s a s a

= = − −
++ + + +

 

Thus 

 
2 2

2
1/ 1/ 1/( )

( )
a a aX

j a j a j
ω

ω ω ω
= − −

+ +
 

The second and third terms can be found in even the shortest table, if 0a > , but the first term 
might require interpretation. From the standard transforms 

 
1[ ( )] ( ) , [1] 2 ( )F u t F
j

π δ ω π δ ω
ω

= + =  

and the linearity property, we see that 1/( )jω  corresponds to the time signal 

 1 1
2 2

1/ 2 , 0
( ) sgn( )

1/ 2 , 0
t

u t t
t
>⎧

− = =⎨− <⎩
 

where we have written the result in terms of the so-called signum function. Thus we have,  

 2 2
1 1 1

2
( ) sgn( ) ( ) ( )at at

aa a
x t t e u t t e u t− −= − −  

again under the assumption that a  is positive. 
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Perusal of tables of Fourier transforms indicates that most of the simple rational transforms that 
are covered are strictly-proper rational functions of ( )jω , that is, the numerator degree is strictly 
less than the denominator degree. This brings up an additional manipulation. 
 
Example 3  Given 

 
2

2
( ) 2( ) 2( )
( ) 2( ) 1
j jX
j j
ω ωω
ω ω

+ +
=

+ +
 

it is convenient to first divide the denominator polynomial into the numerator polynomial to write 
( )X ω  as a constant plus a strictly-proper rational function. This is another calculation where a 

change of variable to, say, s  instead of ( )jω  might be convenient. In any case, it is easy to 
verify that the result is 

 2 2
1 1( ) 1 1

( ) 2( ) 1 (1 )
X

j j j
ω

ω ω ω
= + = +

+ + +
 

This gives, from standard tables, 

 ( ) ( ) ( )tx t t t e u tδ −= +  
 
Remark  We will have a standard table for use in 520.214. This table, reprinted below, and linked 
on the course webpage, will be provided in exams. Use of any other table is not permitted. That 
is, anything not on the official table must be derived from the official table or from first 
principles. 
 

Official 520.214 CT Fourier Transform Table 
 

( )x t  ( )X ω  
( )tδ  1 
1 2 ( )πδ ω  

oj te ω  2 ( )oπδ ω ω−  

cos( )otω  ( ) ( )o oπδ ω ω πδ ω ω− + +  

sin( )otω  ( ) ( )o oj jπδ ω ω πδ ω ω− − + +  
( )u t  1 ( )jω πδ ω+  

( ), 0ate u t a− >  1
a jω+  

( ), 0atte u t a− >  2
1

( )a jω+
 

| |, 0a te a− >  2 2
2a

a ω+
 

1 1( ) ( )u t T u t T+ − − 1

1

sin( )
12 T

TT ω
ω  

( )
k

t kTδ
∞

=−∞
−∑  ( ) , 2 /o o o

k
k Tω δ ω ω ω π

∞

=−∞
− =∑  
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10.7  Fourier Transform and LTI Systems Described by Differential Equations 
 
If a system is described by a first-order, linear differential equation, 
 ( ) ( ) ( ) ,y t ay t bx t t+ = −∞ < < ∞�  
then from Section 6.6 we have that the system is linear and time invariant, and the unit-impulse 
response is given by 

 ( ) ( )ath t be u t−=  
Therefore we can readily compute the frequency response function of the system, 

 ( ) bH
a j

ω
ω

=
+

 

However, this is valid only if the system is stable, that is, 0a > . (If 0a < , then the Fourier 
transform of ( )h t  does not exist, and if 0a = , then the Fourier transform has a different form.) 
Because ( )H ω  is a strictly-proper rational function, if the input signal has a proper rational 
Fourier transform, computation of the response ( )y t  is simply a matter of computing the inverse 
Fourier transform of  ( ) ( ) ( )Y H Xω ω ω=  by partial-fraction expansion and table lookup. That 
is, for a large class of input signals, the response computation is completely algebraic. 
 
More directly, we can express the relation between time signals in the differential equation as a 
relation between Fourier transforms. Letting 
 ( ) [ ( )] , ( ) [ ( )]X F x t Y F y tω ω= =  
linearity and the differentiation property give 
 ( ) ( ) ( )j Y aY b Xω ω ω ω+ =  
This can be solved algebraically to obtain 

 ( ) ( )bY X
a j

ω ω
ω

=
+

 

From this we recognize ( )H ω , and the obvious inverse Fourier transform gives ( )h t , the unit-
impulse response of the system. Again, this is valid only for 0a > , and a danger is that this 
condition is not apparent until the inverse Fourier transform is attempted. In other words, the 
stability condition is not explicit in the algebraic manipulations leading to the frequency response 
function.  
 
It should be clear that this approach applies to higher-order, linear differential equations that 
correspond to stable systems. The frequency response function in such a case can be written in 
the form 

 1 0
1

1 0

( ) ( )( )
( ) ( )

m
m

n n
n

b j b j bH
j a j a

ω ω
ω

ω ω −
−

+ + +
=

+ + +

"
"

 

where m n< . So, again, computation of the response to a large class of input signals is 
completely algebraic (though checking the stability condition is more subtle, and is omitted). 
 
Example  When the input signal has a Fourier transform that is not a proper rational function, the 
calculations become slightly more complicated and involve some recognition of combinations of 
terms. Suppose 2, 1a b= = , and the input signal is a unit step function. Then 
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2

1/ 2 1/ 2

1 1 1( ) ( ) ( )
2 ( )(2 ) 2

( )
2

Y
j j j j j

j j
π

πω π δ ω δ ω
ω ω ω ω ω

δ ω
ω ω

⎡ ⎤
= + = +⎢ ⎥+ + +⎣ ⎦

= − +
+

 

Grouping together the first and last terms, table lookup gives the output signal as 

 21 1
2 2( ) ( ) ( )ty t u t e u t−= −  

 
10.8  Fourier Transform and Interconnections of LTI Systems 
 
Interconnections of stable LTI systems are conveniently described in terms of frequency response 
functions, though it must be guaranteed that the overall system also is stable for the overall 
frequency response function to be meaningful. Assuming this, block diagram equivalences in 
terms of frequency response functions follow from the time domain results, at least for the first 
two cases. Namely, for additive parallel connections, where the overall unit-impulse response is 
the sum of the subsystem unit-impulse responses, and for cascade connections, where the overall 
unit-impulse response is the convolution of the subsystem unit-impulse responses, we 
immediately have 

 
 

 
Of course, in these cases it is clear that stability of the overall system follows from stability of the 
individual subsystems. 
 
The situation is more complicated for the feedback connection of stable LTI systems, but at least 
the Fourier transform representation permits us to achieve an explicit representation for the 
overall system, something that we were unable to accomplish in the time domain.  
 
Beginning with the output, the feedback connection below gives the following algebraic 
relationship between the Fourier transforms of the input and output signals. (Again, the negative 
sign on the feedback line at the summer is traditional.) 
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[ ]1 2

1 1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

Y H X H Y
H X H H Y

ω ω ω ω ω
ω ω ω ω ω

= −

= −
 

Solving for ( )Y ω  by algebraic manipulation gives 
  

1

1 2

( )( ) ( )
1 ( ) ( )

HY X
H H

ωω ω
ω ω

=
+

 

That is, the feedback connection above is equivalent to 

 
Of course the overall system, called the closed-loop system in this context, must be stable for the 
frequency response function shown to be meaningful. Unfortunately, the feedback connection of 
stable systems does not always yield a stable closed-loop system, so that further pursuit of this 
topic first requires the development of stability criteria for feedback systems. 
 
Example  If 

 1 2
3( ) , ( )

2
H H k

j
ω ω

ω
= =

+
 

where k  is a constant, then the frequency response of the closed-loop system is 

 
3 /(2 ) 3( )

1 3 /(2 ) (3 2)cl
jH

k j k j
ωω
ω ω

+
= =

+ + + +
 

This is a valid frequency response if 2 / 3k > − , in which case  

 (3 2)( ) 3 ( )k t
clh t e u t− +=  

Indeed, by choice of k  we can achieve arbitrarily fast exponential decay of the closed-loop 
system’s unit-impulse response! But it is important to note that for 2 / 3k < −  the closed-loop 
system is not stable. Thus it does not have a meaningful frequency response function and the 

( )clH ω  we computed is a fiction. 
 
Exercises 
 
1.  From the basic definition, compute the Fourier transforms of the signals 

(a) ( 2)( ) ( 3)tx t e u t− −= −  

(b) | 1|( ) tx t e− +=  

(c)  
( 1)

0, 0
( ) 2, 0 1

2 , 1t

t
x t t

e t− −

⎧ ≤
⎪

= < <⎨
⎪

≥⎩

 

(d) 
0

( ) ( ) , | | 1k

k
x t a t k aδ

∞

=
= − <∑  
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2.  From the basic definition, compute the signals corresponding to the Fourier transforms  

(a) | |( ) 2X e ωω π −=  

(b) 
2 , 2 2 , 2 2

| ( ) | ( )
0, 0,

X X
else else

π ω ω ω
ω ω

− ≤ ≤ − − ≤ ≤⎧ ⎧
= ∠ =⎨ ⎨
⎩ ⎩

 

(c) ( ) ( )X e uωω ω−=  
(d) ( )X ω  specified by the sketches below: 

 
3.  Compute the Fourier transforms of the signals 

(a) ( ) 2( 1) ( 3 )k

k
x t t kδ

∞

=−∞
= − −∑  

(b)  ( 3 )( ) [ ( 3 ) ( 3 1)]t k

k
x t e u t k u t k

∞ − −

=−∞
= − − − −∑  

 
4.  By inspection of the defining formulas for the Fourier transform and inverse Fourier 
transform, that is, without computing the Fourier transform, evaluate the following quantities for 
the signal shown below. 

 

(a)  ( )X dω ω
∞

−∞
∫  

(b)  ( ) jX e dωω ω
∞

−∞
∫  

(c)  (0)X  
5.  Compute the Fourier transform of the signal ( )x t shown below, 

 
and use the properties of the Fourier transform to determine the transforms of the following 
signals without calculation. 
(a) 



 140

          
(b)        

  
(c) 
 

 
 
 
 
6.  A signal ( )x t  has the Fourier transform 

 
3( )
3

jX
j
ωω
ω

−
=

+
 

(a)  Sketch the magnitude spectrum of the signal. 
(b) Sketch the phase spectrum of the signal 
(c)  Find the signal ( )x t  by using the properties of the Fourier transform. 
 
7.  From the basic definitions and properties of the Fourier transform and inverse Fourier 
transform, answer the following questions about the transform of the signal shown below 
(without calculating the transform). 

 
(a) What is ( )X ω∠ ? (Hint: An even signal has a real Fourier transform.) 
(b) What is (0)X ? 

(c)  What is ( )X dω ω
∞

−∞
∫ ? 

 

8.  Given that the Fourier transform of the signal 2( ) ( )tx t t e u t−=  is 
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 2
1( )

(2 )
X

j
ω

ω
=

+
 

sketch the magnitude and phase spectra for the signals 
(a) ( ) ( )d

dty t x t=  

(b)  ( ) ( )
t

y t x dτ τ
−∞

= ∫  

(c)  ( ) ( 2 4)y t x t= − +  
(d)  ( ) 2 ( ) ( )y t x t x t= + �  
 

9.  Two LTI systems are specified by the unit-impulse responses 2
1( ) 2 ( ) 5 ( )th t t e u tδ −= − +  and 

2( ) 2 ( )th t te u t−= . Compute the responses of the two systems to the input signal ( ) cos( )x t t= . 
 
10.  An input signal ( )x t  applied to the LTI system with frequency response function 

 ( )
1

jH
j
ωω
ω

=
+

 

yields the output signal 

 2( ) ( ) 3 ( ) 7 ( )t ty t t e u t e u tδ − −= + −  
What is ( )x t ? 
 
11.  Suppose ( ) ( ) cos( )y t x t t=  and the Fourier transform of ( )y t  is described in terms of unit-
step functions as 
 ( ) ( 2) ( 2)Y u uω ω ω= + − −  
What is ( )x t ? 
 
12.  Suppose ( )x t  has  Fourier transform described in terms of unit-ramp functions as 
 ( ) ( 1) 2 ( ) ( 1)X r r rω ω ω ω= + − + −  
and suppose ( )p t  is periodic with fundamental frequency oω  and Fourier series coefficients 

, 0, 1, 2,kX k = ± ± … .  
(a) If ( ) ( ) ( )y t x t p t= , determine an expression for ( )Y ω . 
(b) Sketch the amplitude spectrum of ( )y t  if ( ) cos( / 2)p t t= . 
(c) Sketch the amplitude spectrum of ( )y t  if ( ) cos( )p t t= . 
 

13.  Given that the Fourier transform of | |( ) tx t e−=  is  

 2
2

1
( )X

ω
ω

+
=  

compute and sketch the magnitude and phase spectra for 

 3 | |( ) j t td
dty t e e−=  

 
14.  Compute the Fourier transform for the signal 
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 ( ) sin( ) ( )ox t t u tω=  
(Hint: You may have to use special properties of impulses in the calculation.) 
 
15.  A continuous-time LTI system is described by the frequency response function 

 2
2( )

2 3
H

j
ω

ω ω
=

− +
 

and the input signal has the Fourier transform 

 3( ) jX e ωω −=  
Compute the response ( )y t . 
 
16.  Use partial fraction expansion to compute the inverse Fourier transform for 

(a)  2
5 12( )

( ) 5 6
jX

j j
ωω

ω ω
+

=
+ +

 

(b)  2
4( )

3 4
X

j
ω

ω ω
=

− +
 

 
17.  Compute the inverse Fourier transform for 

(a)  
( ) 2

2
(5 4 )( )

(9 6 )(2 )

je jX
j j

π πω ω ωω
ω ω ω

− − +
=

− + +
 

(b)  2
2

10 10( )
2 3

j
j eX e

j

ω
ωω

ω ω

−
− +

= +
− +

 

 
18.  Compute the overall frequency response function  ( ) ( ) / ( )H Y Xω ω ω=  for the systems 
shown below. (Of course, assume that the subsystems and the overall system are stable.) 
(a)   
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Notes for Signals and Systems 
 

11.1 Introduction to the Unilateral Laplace Transform 
 
From Chapter 10 it is clear that there is one main limitation on the use of the Fourier transform: 
the signal must be such that the transform integral converges, or such that we can apply 
generalized function techniques to arrive at a transform (for example, the case of periodic 
signals). It turns out that this limitation can be avoided, particularly for right-sided signals, by 
including a damping factor in the integral. The resulting transform is called the unilateral Laplace 
transform. 
 
For a right-sided, or unilateral, signal ( )x t , sometimes written as ( ) ( )x t u t  to emphasize that the 
signal is zero for 0t < , the unilateral Laplace transform is defined as 

 
0

( ) ( ) stX s x t e dt
−

∞
−= ∫  

Here s  is a complex variable, often written in rectangular form using the standard notation 

s jσ ω= + . The lower limit of integration is shown as 0−  to emphasize the fact that an impulse 
or doublet at 0t =  is included in the range of integration, but often we leave this understood and 
simply write the lower limit as 0. 
 
If we consider Re{ } 0sσ = > , then 

 | | | | | | 0st t j t te e e e as tσ ω σ− − − −= = → →∞  
Therefore ( )X s  can be well defined even though ( )x t  does not go to zero as t  goes to ∞ . 
Indeed, if ( )x t  is of “exponential order,” that is, there exist real constants ,K c  such that  

 | ( ) | , 0ctx t Ke t≤ ≥  
then ( )X s  exists if we think of s  as satisfying Re{ }s c>  . In other words, for signals of 
exponential order the unilateral Laplace transform always exists for a half-plane of complex 
values of s , as shown below.  

 
Because signals encountered in the sequel will always be of exponential order, we can be a bit 
cavalier and ignore detailed analysis of the regions of convergence, confident in the knowledge 
that there is a whole half-plane of values of s  for which ( )X s  is well defined. And the actual 
numerical values of s  for which the integral converges turn out to be of no interest for our 
purposes. 
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Example The signal 

 
2

( ) ( )tx t e u t=  
is not of exponential order since for any given values of K  and c , 

 
2

, for sufficiently larget cte Ke t>  
The signal,  

 5( ) ( )tx t e u t=  
is of exponential order, and we can take 1 , 5K c= =  to prove it. 
 

Example   The Laplace transform of 3( ) ( )tx t e u t−= is 

 

3 ( 3)

00

( 3)
0

( ) ( )

1 1
3 3

t st s t

s t

X s e u t e dt e dt

e
s s

−

∞ ∞
− − − +

∞− +

= =

−
= =

+ +

∫ ∫
 

Here a half-plane of convergence is given by Re{ } 3s > − , and indeed this condition is crucial in 

evaluating the integral at the upper limit. For the signal 3( ) ( )tx t e u t= , a similar calculation gives 

 
1( )

3
X s

s
=

−
 

and the half-plane of convergence in this case is Re{ } 3s > . However, as mentioned above, we 
will not insist on keeping track of the convergence region. 
 
For signals involving generalized functions, the notion of exponential order does not apply, but in 
typical cases the special properties of generalized functions can be used to evaluate the Laplace 
transform. 
 
Example  The Laplace transform of the impulse, ( ) ( )x t tδ= , is easily evaluated using the sifting 
property: 

 0

0
( ) ( ) 1st sX s t e dt eδ

−

∞
− −= = =∫  

 
Example   The Laplace transform of the unit step function is 

 
00

1( ) ( ) st stX s u t e dt e dt
s−

∞ ∞
− −= = =∫ ∫  

where in this case a half-plane of convergence is given by Re{ } 0s > . 
 
 
Remark  If a right-sided signal ( )x t  has a unilateral Laplace transform that converges for 
Re{ } 0s = , then we can write, taking 0σ = , 

 
0 0

( ) ( ) ( ) [ ( )]st j tX s x t e dt x t e dt F x tω
∞ ∞

− −= = =∫ ∫  
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That is, the Laplace transform with 0σ =  is the Fourier transform for right-sided signals. 
(Sometimes this is written as  
 ( ) ( )s jX s X jω ω= =  

which leads to a different notation for the Fourier transform than we have used. Namely, we write 
the Fourier transform as ( )X ω , rather than ( )X jω ,  absorbing the imaginary unit j  into the 
function rather than displaying it in the argument. This unfortunate notational collision should be 
viewed as a mild inconvenience, and it should not be permitted to obscure the relationship 
between the Fourier and Laplace transforms of right-sided signals.)  
 

Example   For 3( ) ( )tx t e u t−=  we see that the half-plane of convergence includes 0σ = , and 
from above we have 

 
1( )

3
X

j
ω

ω
=

+
 

For the unit-step function we have ( ) 1/X s s= , but in this case the region of convergence does 
not include 0σ = , and indeed the Fourier transform of the unit step is not simply 1/( )jω . 
 
11.2 Properties of the Unilateral Laplace Transform 
 
We now consider a variety of familiar operations on a right-sided signal ( )x t , and interpret the 
effect of these operations on the corresponding unilateral Laplace transform ( )X s . Of course, 
the operations we consider must yield right-sided signals. We assume that signals are of 
exponential order so that existence of the Laplace transform is assured. Furthermore, we should 
verify that each operation considered yields a signal that also is of exponential order. Often this is 
obvious, and will not be mentioned, but care is needed in a couple of cases.  
 
Throughout we use the following notation for the Laplace transform where L denotes a “Laplace 
transform operator:” 

 
0

( ) [ ( )] ( ) stX s L x t x t e dt
∞

−= = ∫  

 
  
Linearity  If [ ( )] ( )L x t X s=  and [ ( )] ( )L z t Z s= , then for any constant a, 
 [ ( ) ( )] ( ) ( )L a x t z t a X s Z s+ = +  
  
This property follows directly from the definition. 
 
Time Delay If [ ( )] ( )L x t X s= , then for any constant 0ot ≥ , 

 [ ( ) ( )] ( )ost
o oL x t t u t t e X s−− − =  

 
  
The calculation verifying this is by now quite standard. Begin with 

 
0

[ ( ) ( )] ( ) ( ) st
o o o oL x t t u t t x t t u t t e dt

∞
−− − = − −∫  
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and change integration variable from t to ot tτ = −  to obtain the result. Notice that we use the 
unit-step notation to make explicit the fact that the right-shifted signal, ( )ox t t−  is zero for 

ot t< . 
 
Example  For a rectangular pulse, ( ) ( ) ( )ox t Ku t Ku t t= − − , 0ot > ,  we can use linearity and 
the delay property to write 

 
1( )

o
o

t s
t sK K eX s e K

s s s

−
− −

= − =  

 
Time Scaling If [ ( )] ( )L x t X s= , then for any constant 0a > , 

 ( )1[ ( )] s
a aL x at X=  

This is another familiar calculation, and the details will be skipped. The assumption that 0a >  is 
required so that the scaled signal is right sided. 
 
The next two properties require a more careful interpretation of the lower limit in the Laplace 

transform definition, and we write that limit as 0− . 
  
Differentiation If [ ( )] ( )L x t X s= ,  and the time-derivative signal ( )x t�  has a Fourier transform, 
then 

 [ ( )] ( ) (0 )L x t sX s x −= −�  
 
To justify this property, directly compute the transform, using integration-by-parts: 

 
00 0

[ ( )] ( ) ( ) ( )st st stL x t x t e dt x t e x t s e dt−
− −

∞ ∞∞− − −= = +∫ ∫� �  

We assume that Re{ }sσ =  is such that ( ) 0stx t e− →  as t →∞ , and we interpret 0(0 ) sx e
−− −  

as (0 )x −  to arrive at the claimed result. 
  
Example  Beginning with [ ( )] 1/L u t s= , the differentiation property confirms that 

 
1[ ( )] [ ( )] 1L t L u t s
s

δ = = =�  

  
Note that we can iterate the differentiation property to obtain the Laplace transform for higher 
derivatives, for example, 

 2[ ( )] [ ( )] (0 ) [ ( )] (0 ) (0 )L x t s L x t x s L x t s x x− − −= − = − −�� � � �  
  
Integration  If [ ( )] ( )L x t X s= , and 

 
0

( ) ( ) ( )
t

z t x d u tτ τ
−

= ∫  

where the unit-step is appended simply for emphasis, then 
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1( ) ( )Z s X s
s

=  

The proof of this is another integration by parts that is outlined below: 

 0 0 0 00

1 1[ ( )] ( ) ( ) ( ) ( ) ( )

1 ( )

t t
st st stL z t x d u t e dt x d u t e x t e dt

s s

X s
s

τ τ τ τ
− − − −−

∞
∞ ∞

− − −−
= = +

=

∫ ∫ ∫ ∫
 

The evaluations of the first term resulting from the integration-by-parts are both zero, but for 
different reasons. It can be shown that the running integral of a signal of exponential order is of 
exponential order, and so we can assume that Re{ }sσ =  is such that as t →∞  the product of 

the running integral and the exponential goes to zero. The evaluation at 0t −=  yields zero for 
more obvious reasons. 
 
Convolution  If  ( )x t  and ( )h t  are right-sided signals with unilateral Laplace transforms ( )X s  
and ( )Z s , then the convolution ( )( )h x t∗  yields a right-sided signal that can be written 

 
0

( ) ( ) ( ) ( )
t

y t x h t d u tτ τ τ= −∫  

with Laplace transform 
 ( ) ( ) ( )Y s H s X s=  
 
The proof of this property is very similar to the Fourier-transform case, and therefore is omitted. 
 
Final Value Theorem If [ ( )] ( )L x t X s=  and the limits 
 0lim ( ) , lim ( )t sx t sX s→∞ →  
both exist, then 
 0lim ( ) lim ( )t sx t sX s→∞ →=  
  
Rather than prove this result, we present an example that illustrates the danger in applying it 
recklessly. 
 
Example  A straightforward calculation gives 

 

0 0

( ) ( )

0 0

2

[sin( ) ( )] sin( )
2

1/ 2 1/ 2

1
1

jt jt
st st

s j t s j t

e eL t u t t e dt e dt
j

j je e
s j s j

s

−∞ ∞
− −

∞ ∞
− − − +

−
= =

−
= +

− +

=
+

∫ ∫

 

Obviously, 

 0 0 2lim ( ) lim 0
1

s s
ss X s

s
→ →= =

+
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However, lim [sin( ) ( )]t t u t→∞  does not exist and we see that the Final Value Theorem can give 
misleading results when loosely applied! 
 
11.3 Inverse Unilateral Laplace Transform 
 
Inspection of the Laplace transforms we have computed, or a table of transforms, indicates that 
the signals typically encountered have transforms that are strictly-proper rational functions. These 
are ratios of polynomials in s  with the degree of the numerator polynomial less than the degree 
of the denominator polynomial. As might be expected from the Fourier-transform case, partial 
fraction expansion, followed by table lookup, is the main tool for computing the time signal 
corresponding to a given transform. (There is a more general inverse transform formula, but it 
involves line integrals in the complex plane and we will not make use of it.)  
 
Remark  Shown below is the standard table of Laplace transforms for use in 520.214. Use of any 
other table in exams or homework assignments is not permitted. Anything not on this official 
table must be derived from entries on the table or from the definition of the transform. 
 

Official 520.214 Unilateral Laplace Transform Table 
 

( )x t  ( )X s  
( )tδ  1 
( )u t  1

s  

( )r t  
2
1
s

 

( )ate u t−  1
s a+  

( )atte u t−  2
1

( )s a+
 

cos( ) ( )ot u tω  
2 2

o

s
s ω+

 

sin( ) ( )ot u tω  
2 2

o

os
ω
ω+

 

cos( ) ( )at
oe t u tω−

2 2( ) o

s a
s a ω

+
+ +

sin( ) ( )at
oe t u tω−  

2 2( )
o

os a
ω

ω+ +

 
 
We illustrate the calculation of inverse transforms with two examples. 
 
Example  Given 

 
2

2
1( )

1
s sX s

s
+ +

=
+

 

which is a proper, but not strictly-proper, rational function, we can divide the numerator by the 
denominator to write 
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 2( ) 1
1

sX s
s

= +
+

 

 
Using linearity of the Laplace transform, we can treat the terms separately. Partial fraction 
expansion of the second term gives 

 2
1/ 2 1/ 2

( )( )1
s s

s j s j s j s js
= = +

+ − + −+
 

From the table of transforms, 

 1 1 1
2 2 2( ) ( ) cos( ) ( )

1
jt jtsL e u t e u t t u t

s
− −⎡ ⎤

= + =⎢ ⎥
+⎣ ⎦

 

Therefore 
 ( ) ( ) cos( ) ( )x t t t u tδ= +  
 
Another case that is straightforward to handle is when there are “delay factors” in the transform. 
 
Example  Given 

 
2

2( )
1

s ss e eX s
s

− −+
=

+
 

we can write 

 2
2 2

1( )
1 1

s ssX s e e
s s

− −= +
+ +

 

Using the linearity, delay, and derivative properties in conjunction with the previous example, we 
obtain 
 ( ) cos( 2) ( ) sin( 1) ( 1)x t t u t t u t= − + − −  
 
11.4 Systems Described by Linear Differential Equations 
 
Consider a system where the input and output signals are related by the first-order differential 
equation 
 ( ) ( ) ( )y t ay t bx t+ =�  
Assuming that the input signal is right sided, and assuming that initial condition at 0t =  is zero, 
the output signal is right sided and the system is linear and time invariant. (In particular, since an 
LTI system with identically zero input must have identically zero output, the assumption of zero 
initial condition is important.) 
 
In the setting of right-sided input and output signals, the system can be described in terms of 
unilateral Laplace transforms. Regardless of the values of the constants a  and b , and in 
particular regardless of the stability property of the system, we can compute the Laplace 
transform of the unit impulse response 

 ( ) ( )ath t be u t−=  
 
 to obtain  

 ( ) bH s
s a

=
+
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Rather than the term frequency response function, this is called the transfer function of the 
system, and in terms of the Laplace transforms ( )X s  and ( )Y s  of the right-sided input and 
output signals the system is described by 
 ( ) ( ) ( )Y s H s X s=  
 
Another approach is to equate the Laplace transforms of the left and right sides of the differential 
equation, and this approach has the advantage of not requiring knowledge of the unit-impulse 
response. Using the linearity and differentiation properties gives 
 ( ) ( ) ( )s a Y s bX s+ =  
Thus, again, we obtain 

 
( ) ( )
( )

Y s bH s
X s s a

= =
+

 

If the input signal has a proper rational Laplace transform, then it is clear that the output signal 
has a strictly-proper rational Laplace transform. Therefore we can solve for the response to a wide 
class of input signals by the algebraic process of partial fraction expansion and table lookup.  
 
Again, an advantage of the Laplace-transform approach in this unilateral setting is that systems 
with unbounded input signals and/or output signals, or systems that are unstable, can be treated, 
in contrast to the Fourier transform approach. 
 
Example  For the case where 1 , 1a b= − =  and where the input signal is  

 3( ) ( )tx t e u t=  
that is, an unstable system with unbounded input signal, we immediately obtain 

1( )
( 1)( 3)

Y s
s s

=
− −

 

Partial fraction expansion easily leads to  
31 1

2 2( ) ( ) ( )t ty t e u t e u t= − +  

 
 
For systems described by higher order linear differential equations, again with unilateral input 
and output signals and zero initial conditions,  

 ( ) ( 1) ( 1)
1 0 1 0( ) ( ) ( ) ( ) ( )n n n

n ny t a y t a y t b x t b x t− −
− −+ + + = + +" "  

 
it is straightforward to equate the Laplace transforms of the right and left sides to show that the 
corresponding transfer function is  

 
1

1 1 0
1

1 0
( )

n
n
n n

n

b s b s bH s
s a s a

−
−

−
−

+ + +
=

+ + +

"
"

 

This is a strictly-proper rational function of s . Thus for input signals that have proper rational 
Laplace transforms, the output signal will have a proper rational Laplace transform, and the 
solution procedure for the output signal is again algebraic, though of course the roots of the 
denominator must be computed for the partial fraction expansion. 
 
11.5 Introduction to Laplace Transform Analysis of LTI Systems  
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We consider LTI systems with right-sided input signals in this section, and furthermore we 
assume that the system transfer function is a strictly-proper rational function. Thus we can think 
of the system as arising from a differential equation description, though that is not necessary. In 
any case, we introduce some standard methods based on the transfer function description of the 
system.  
 
When we write such a transfer function, or more generally any strictly-proper Laplace transform, 

1
1 1 0

1
1 0

( )
n

n
n n

n

b s b s bH s
s a s a

−
−

−
−

+ + +
=

+ + +

"
"

 

we will assume that there are no common roots of the numerator and denominator polynomials. 
That is, the numerator and denominator polynomials are assumed to be relatively prime. This 
assumption is made to avoid equivalent forms of the transfer function or transform that 
superficially appear different. 
 
Definition  The poles of a rational transfer function (or transform) are the roots of the 
denominator polynomial, and the zeros are the roots of the numerator polynomial. 
 
In counting the poles and zeros, we use the standard terminology associated with repeated roots 
of a polynomial. 
 
Example  The transfer function 

 3 2 2 2
5( 2) 5( 2) 5( )
4 5 2 ( 2)( 1) ( 1)

s sH s
s s s s s s

+ +
= = =

+ + + + + +
 

has no zeros and two poles at 1s = −  (often stated as a multiplicity 2 pole at  1s = − ) . 
 
There are two important results that can be stated immediately using this definition, and the 
proofs are essentially obvious applications of partial fraction expansion and inspection of the 
transform table for the types of terms that arise from partial fraction expansion. 
 
Theorem  A right-sided signal ( )x t  with strictly-proper rational Laplace transform is bounded if 
and only if all poles of the transform have non-positive real parts and those with zero real parts 
have multiplicity 1. 
 
Theorem  An LTI system with strictly-proper rational transfer function is stable if and only if all 
poles of the transfer function have negative real parts. 
 
Example  Consider a system with transfer function  

 
20( )

( 2)
H s

s s
=

+
 

and suppose the input signal is a unit-step function, 
1( )X s
s

=  

Then 

 2 2
20 10 5 5( )

2( 2)
Y s

s ss s s
= = − +

++
 

and the output signal is given by 
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 2( ) 10 ( ) 5 ( ) 5 ( )ty t r t u t e u t−= − +  
This response is unbounded, because of the ramp component, which is not unexpected since the 
system is not stable. Notice, however, that among our typical input signals the only bounded input 
signal that produces an unbounded response is a step input. 
 
Example  Consider a system with transfer function  

 
3( )

( 1)( 2)
sH s

s s
−

=
+ +

 

and suppose the input signal is described by 
1( )

3
X s

s
=

−
 

that is, the input is the unbounded signal 3( ) ( )tx t e u t= . Then 

 
1 1 1( )

( 1)( 2) 1 2
Y s

s s s s
= = −

+ + + +
 

and the output is the bounded signal  

 2( ) ( ) ( )t ty t e u t e u t− −= −  
This example gives an interpretation of the zeros of a transfer function in terms of growing 
exponential inputs that are “swallowed” by the system! 
 
Remark  It should be clear that the transfer function description of interconnections of LTI 
systems is very similar in appearance to the frequency response function description based on the 
Fourier transform discussed in Section 10.8. However, the Laplace transform approach is not 
beset by the stability limitations that are implicit in applying the Fourier transform. Consider the 
feedback system shown below, where 1( )H s  and 2( )H s  are the subsystem transfer functions.  

 
Straightforward calculations give the unsurprising result that the overall system is described by 
the transfer function 

 1

1 2

( )( )
1 ( ) ( )

H sH s
H s H s

=
+

 

Under reasonable hypotheses we can show that ( )H s  is a strictly-proper rational function as 
follows. Suppose that 1( )H s  is a strictly-proper rational function and 2( )H s  is a proper rational 
function. Then we can write these transfer functions in terms of their numerator and denominator 
polynomials as 

 1 2
1 2

1 2

( ) ( )( ) , ( )
( ) ( )

n s n sH s H s
d s d s

= =  

where 1 1deg ( ) deg ( )n s d s<  and 2 2deg ( ) deg ( )n s d s≤ . Then, in polynomial form, 
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 1 2

1 2 1 2

( ) ( )( )
( ) ( ) ( ) ( )

n s d sH s
d s d s n s n s

=
+

 

and it follows that ( )H s  is a strictly-proper rational function. Thus regardless of stability issues, 
the response to the overall system to various input signals can be calculated in the usual way. 
 
Example  Repeating the example from Section 10.8, if 

 1 2
3( ) , ( )

2
H s H s k

s
= =

+
 

then 

 
3( )

2 3
H s

s k
=

+ +
 

If the input to the feedback system is a unit step, ( ) 1/X s s= , then the response is described by 

 
3( )

( 2 3 )
Y s

s s k
=

+ +
 

If 2 / 3k = − , then 2( ) 3 /Y s s=  and ( ) 3 ( )y t r t= . Otherwise an easy partial fraction expansion 
calculation gives 

 (2 3 )3 3
2 3 2 3( ) ( ) ( )k t

k ky t u t e u t− +
+ +

= −  

Inspection of these responses indicates, and the stability criterion described above confirms, that 
the system is stable if and only if 2 3 0k+ > . However, in any case the transfer function 
representation is valid and can be used for response calculations and other purposes.  
 
Exercises 
 
1.  Using either the basic definition or tables and properties, compute the Laplace transforms of 

(a) 2( ) ( 1)tx t e u t−= −  

(b)  2( 3)( ) ( 1) ( ) ( 1)tx t t t e u tδ δ − += − + + −  
(c)  

 
(d) 
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2.  For each of the following Laplace transforms, use the final value theorem to determine 
lim ( )t x t→∞ , and state whether the conclusion is valid. 

(a)  2
2 4( )

5 6
sX s

s s
+

=
+ +

 

(b)  3 2
2 4( )
5 6
sX s

s s s
+

=
+ +

 

(c)  3 2( )
5 6

seX s
s s s

−
=

+ +
 

(d)  2
2( )

( 1)
X s

s
=

−
 

 

3. Given that the Laplace transform of ( ) cos(2 ) ( )x t t u t=  is 2( )
4

sX s
s

=
+

  compute the Laplace 

transform of ( ) /dx t dt by two methods: First, differentiate the signal and use the tables. Second, 
use the differentiation property. 
 
4.  Determine the final value of the signal ( )x t  corresponding to 

(a)  
2

2
2 3( )

5 6
sX s

s s
+

=
+ +

 

(b)  
2

3 2
2 3( )

5 6
sX s

s s s
+

=
+ +

 

(c)  2
3( )

1
X s

s
=

−
 

 
5. For the system with transfer function 
 

2
( ) 3
( ) ( 4)

Y s s
X s s

−
=

+
 

compute the steady-state response ( )ssy t , the time function that ( )y t approaches asymptotically, 
as t →∞ , to the input signals 

(a) 3( ) ( )tx t e u t−=         (b) 3( ) ( )tx t e u t=         (c) ( ) 2sin(3 ) ( )x t t u t=  
(d)  ( ) ( )x t tδ=        (e) ( ) ( )x t u t=  
(Hint: Do not calculate quantities you don’t need! And you may skip calculation of the phase 
angle in (c) – simply call it θ . ) 
 
6.  Compute the signal ( )x t  corresponding to 

(a)  3 2
5 4( )
3 2
sX s

s s s
+

=
+ +
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(b)  
4

3
( 1)( )

se sX s
s s

− +
=

−
 

(c)   3 2
10( 2)( )

( 5)( 2 )
sX s

s s s s
+

=
+ + +

 

 
7.   Find a differential equation description for the LTI system described by 

(a)  
3( )

( 1)( 2)
sH s

s s
=

+ +
 

(b)  ( ) [2 2 ] ( )th t e u t−= −  
 
8.   An LTI system with input signal  

 2( ) [ ] ( )t tx t e e u t−= +  
has the response 

 2( ) [2 3 ] ( )ty t t e u t−= −  
What is the transfer function, ( )H s , of the system? What is the unit-impulse response of the 
system? 
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Notes for Signals and Systems 

 
12.1 Unilateral Laplace Transform – Application to Circuits 
 
When considering RLC circuits, one approach is to write the differential equation (or integro-
differential equation) for the circuit, and then solve the equation using the Laplace transform. 
However, a typically more efficient approach is to consider the circuit directly in terms of 
Laplace transform representations. We assume in doing this that the input voltage or current for 
the circuit is a right-sided signal. For the case of zero initial conditions, this permits describing 
the behavior of each circuit element in terms of a transfer function, as defined in terms of the 
unilateral Laplace transform.. 
 
A resistor, as shown below, is the simplest case. 

 
The voltage-current relation is  
 ( ) ( ) , 0R Rv t R i t t= ≥  
and this can be represented as a “resistance transfer function,” 

 
( )
( )

R

R

V s R
I s

=  

or a “conductance transfer function,” 
( ) 1
( )

R

R

I s
V s R

=  

For an inductor, 

 
the voltage-current relation is 

 
( )( ) , 0L

L
di tv t L t

dt
= ≥  

With zero initial conditions, this gives the transfer function descriptions 

 
( )
( )

L

L

V s Ls
I s

=  

and  

 
( ) 1
( )

L

L

I s
V s Ls

=  
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The terminology that goes with these transfer functions can be formally defined as follows. 
 
Definition  For a two-terminal electrical circuit 

 
with all independent sources in the circuit set to zero and all initial conditions zero, the 
impedance  ( )Z s  of the circuit is the transfer function 

 
( )( )
( )

V sZ s
I s

=  

and the admittance ( )Y s  of the circuit is the transfer function 

 
( )( )
( )

I sY s
V s

=  

 
 
Using this definition, the impedance of a resistor is the resistance, and the impedance of an 
inductor is ( )Z s Ls= . Or, the admittance of a resistor is the conductance, 1/ R , and the 
admittance of an inductor is ( ) 1/( )Y s Ls= . 
 
For a capacitor, 

 
with voltage-current relation 

0

1( ) ( )
t

C Cv t i d
C

τ τ= ∫  

we have 

 
1( ) ( )C CV s I s

Cs
=  

and thus the impedance is ( ) 1/( )Z s Cs=  while the admittance is ( )Y s Cs= . 
 
For each of the three basic circuit elements, we can represent the voltage current behavior in the 
Laplace-transform domain by a block diagram, with appropriate labels depending on the choice 
of input or output. For example, 
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Once we represent a circuit in this way, a key observation is that the basic circuit analysis tools 
such as Kirchhoff’s laws can be applied in the transform domain. If 1( ) , , ( )Ki t i t…  are the 
currents entering a node, then the current law 

 
1

( ) 0
K

k
k

i t
=

=∑  

can alternately be expressed in the transform domain as 

1
( ) 0

K
k

k
I s

=
=∑  

 
Obviously a similar statement can be made about the sum of voltages across a number of circuit 
elements in a loop. This means that circuit analysis in the Laplace domain proceeds much as does 
resistive circuit analysis in the time domain, namely, it is algebraic in nature with impedance and 
admittance of circuit elements playing roles similar to resistance and conductance. 
 
Example Consider the parallel connection of circuit elements described by their admittances, as 
shown below. 

 
Kirchhoff’s current law at the top node gives 

 
1 2

1 2

1 2

( ) ( ) ( )
( ) ( ) ( ) ( )

[ ( ) ( )] ( )

I s I s I s
Y s V s Y s V s
Y s Y s V s

= +
= +
= +

 

 
Thus the admittance of the overall circuit is 

 1 2
( )( ) ( ) ( )
( )

I sY s Y s Y s
V s

= = +  

It is easy to see that this calculation extends to any number of admittances in parallel, and leads to 
the statement that “admittances in parallel add.” Form the circuit admittance, it is an easy 
calculation to obtain the impedance: 
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1 2

1 2
1 11 2 1 2( ) ( )

( ) ( )( ) 1 1( )
( ) ( ) ( ) ( ) ( )

Z s Z s

Z s Z sV sZ s
I s Y s Y s Z s Z s

= = = =
+ ++

 

These expressions have familiar forms from the analysis of resistive circuits when we interpret 
impedance as resistance and admittance as conductance. 
 
Example To calculate the impedance of the circuit 

 
we first redraw it as a Laplace domain diagram with admittance labels: 

 
Then 

 1 2 3
( )
( )

1 1( ) ( ) ( ) ( )I s
V S

Y s Y s Y s Y s Cs
R Ls

= = + + = + +  

and the circuit impedance is 

 
1

1 1 2 1 1
1( ) C

R Ls RC LC

s
Z s

Cs s s
= =

+ + + +
 

Notice that if , , 0R L C > , the usual case, then the circuit impedance is a (bounded-input, 
bounded-output) stable system since the poles of ( )Z s  will have negative real parts. Of course, 
to compute the voltage for a given current ( )i t , we compute ( )I s  and then the terminal voltage 
(Laplace transform) is given by 
 ( ) ( ) ( )V s Z s I s=  
Finally, ( )v t  can be computed by partial fraction expansion and table lookup, assuming that ( )I s  
is a proper rational function. 
 
Example Consider a series connection of circuit elements described by their impedances, 

 
From Kirchhoff’s voltage law, 
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 1 2 1 2

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( )] ( )

V s V s V s Z s I s Z s I s
Z s Z s I s

= + = +
= +

 

Therefore the impedance of the circuit is 

 1 2
( )( ) ( ) ( )
( )

V sZ s Z s Z s
I s

= = +  

and the admittance is 

 
1 2

( ) 1( )
( ) ( ) ( )

I sY s
V s Z s Z s

= =
+

 

This calculation extends to a series connection of any number of circuit elements in the obvious 
manner. 
 
Example  The impedance of the circuit 

 
is computed from the Laplace transform equivalent 

 
as 

 
21 1/( ) Ls Rs CZ s R Ls

Cs s
+ +

= + + =  

It is interesting to note that this impedance is an “improper” rational function of s , in that the 
numerator degree is higher than the denominator degree. For example, a unit-step in current to the 
circuit will produce an impulse in voltage. Also, the circuit is unstable since ( )Z s  has a pole at  

0s = . In particular, a unit step in current produces a ramp in voltage. 
 
The analysis of circuits via the transformed circuit also applies to other transfer functions of 
interest, in addition to the impedance and admittance. That is, the techniques apply for other 
choices of input and output signals, with, of course, all initial conditions zero. Consider the circuit 
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where the voltage transfer function ( ) / ( )out inV s V s  is of interest. Clearly 
 1 2 3 1 2 3( ) ( ) ( ) ( ) [ ( ) ( ) ( )] ( )inV s V s V s V s Z s Z s Z s I s= + + = + +  
which gives 

 
1 2 3

1( ) ( )
( ) ( ) ( ) inI s V s

Z s Z s Z s
=

+ +
 

Then the output voltage transform is 

 3
3

1 2 3

( )( ) ( ) ( ) ( )
( ) ( ) ( )out in

Z sV s Z s I s V s
Z s Z s Z s

= =
+ +

 

and the voltage transfer function is clear. Clearly this is the analog of the resistive voltage divider 
circuit.  
 
In a similar manner, the current divider circuit 

 
yields transfer functions from the input current to the thj − branch current via the calculations 
 1 2 3 1 2 3( ) ( ) ( ) ( ) [ ( ) ( ) ( )] ( )in inI s I s I s I s Y s Y s Y s V s= + + = + +  
yielding 

 
1 2 3

( )
( ) ( ) ( ) ( )

( ) ( ) ( )
j

j j in in
Y s

I s Y s V s I s
Y s Y s Y s

= =
+ +

 

 
 
The notion of source transformations in resistive circuits also can be applied in the setting of the 
transformed circuit. These transformations replace voltage sources in series with impedances by 
current sources in parallel with impedances, or the reverse. For the circuit shown below,  
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the voltage divider rule immediately gives 

 2
2

1 2

( )( ) ( )
( ) ( ) in

Z sV s V s
Z s Z s

=
+

 

Assuming 1( ) 0Z s ≠ , this expression can be rearranged as 

 1 2

1 2
2 1 11 2 1 1( ) ( )

1 2 1

( ) ( )( ) ( ) 1( )
( ) ( ) ( ) ( )

( )1
( ) ( ) ( )

in in

Z s Z s

in

V s V sZ s Z sV s
Z s Z s Z s Z s

V s
Y s Y s Z s

= =
+ +

=
+

 

This is readily seen to correspond to the circuit shown below: 
 

 
The equivalence of these two circuit structures is often convenient in facilitating application of 
voltage or current division. 
 
Example  Consider the circuit shown below, where initial conditions are zero, the input current is 
a unit-step signal, and the output signal is the voltage across the capacitor: 

 
Converting this to the transform equivalent circuit gives 

 
A source transformation leads to another equivalent circuit in the transform domain, 
where the current source is replaced by a transform voltage source 

 1
1( ) ( ) ( )V s Z s I s Ls L
s

= = =  
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Next the voltage divider relation gives 

 

2

1 2

2 2

( ) 1/( )( ) ( )
( ) ( ) 1/( )

1/ 1//
1/( ) 1/( )

C
Z s CsV s V s L

Z s Z s Ls Cs

C LCL C
s LC s LC

= =
+ +

= =
+ +

 

and table lookup gives the inverse Laplace transform 
 1( ) / sin( ) ( )C LC

v t L C t u t=  

 
 
Example  These basic approaches are quite efficient, even for reasonably complicated circuits. 
Consider the case below, where the objective is to compute the transfer function ( ) / ( )out inI s V s : 

 
Converting to the transform equivalent circuit gives 

 
where we have chosen impedance labels for the various portions of the overall circuit. Next, a 
source transformation gives 
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Finally, by current division, 

 
2

2

3

1 2 3

2
1

1 21
2

4 3 2

( ) ( )( )
( ) ( ) ( ) 1

( )
1

( 1) ( )
3 2 6 3 2

in
out

s
s in

s s
s ss

in

Y s V sI s
Y s Y s Y s s

V s
s

s s V s
s s s s

+

+ ++

=
+ + +

=
++ +

+
=

+ + + +

 

 
The notion of a transform equivalent circuit can be used in other settings that are not restricted to 
RLC circuits. We illustrate this by considering a circuit involving an ideal operational amplifier. 
 
Example Beginning directly in the Laplace domain, consider the ideal op amp with impedances 

( )Z s  and ( )fZ s  as shown: 

 
 
In order to compute the voltage transfer function , ( ) / ( )out inV s V s , we use the virtual short 
property of the ideal op amp to conclude that 

( ) ( ) ( )out fV s Z s I s= −  

and also 
 ( ) ( ) ( )inV s Z s I s=  
Thus it is easy to see that 

 
( )( )

( ) ( )
fout

in

Z sV s
V s Z s

= −  

 
For example, if we choose a capacitor in the feedback path and a resistor in the input path, then 

( ) 1/( )fZ s Cs=  and ( )Z s R= . This gives 

 
( ) 1/( )
( )

out

in

V s RC
V s s

= −  

 
and in the time domain we recognize that the circuit is a running integrator. 
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12.2 Circuits with Nonzero Initial Conditions 
 
For circuit elements with nonzero initial stored energy, that is, nonzero initial conditions, we can 
develop Laplace transform equivalent circuits that represent the initial conditions as voltage or 
current sources. 
 
For an inductor, 

 
with initial current (0 )Li

−  in the indicated direction, the voltage-current relation in the time 
domain remains 

 
( )( ) , 0L

L
di tv t L t

dt
= ≥  

However, the unilateral Laplace transform differentiation property, taking account of the initial 
condition, yields 

 
( ) [ ( ) (0 )]

( ) (0 )
L L L

L L

V s L sI s i

LsI s Li

−

−

= −

= −
 

 
This corresponds to the transform equivalent circuit shown below, where the initial condition 
term is represented as a voltage source with appropriate polarity: 
 

 
 
Of course, an alternate approach is to write 

 
(0 )1( ) ( ) L

L L
iI s V s

Ls s

−
= +  

 
 
This leads to an admittance version of the transform equivalent, where the initial condition is 
represented as a current source with appropriate polarity: 
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Similar calculations for a capacitor are almost apparent. With an initial voltage (0 )Cv − , the 
capacitor with polarity as marked 

 
is described by  
 ( ) ( ) , 0C CC v t i t t= ≥�  
The Laplace transform differentiation property gives 

 [ ( ) (0 )] ( )C C CC sV s v I s−− =  
or 

 ( ) ( ) (0 )C C CI s CsV s Cv −= −  
 
This corresponds to the transform equivalent circuit shown below, where the initial condition is 
represented by a current source. 

 
An alternative is to write 

 
(0 )1( ) ( ) C

C C
vV s I s

Cs s

−
= +  

which corresponds to the circuit 
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where a voltage source accounts for the initial condition. 
 
Example  Consider the circuit 

 
where the input voltage is ( ) 4 ( )inv t u t= , the initial current in the inductor is (0 ) 1Li

− = , and the 
initial voltage on the capacitor is zero. To compute the output, ( )outv t , we first sketch the 
transform equivalent circuit: 

 
 
The two voltage sources can be combined, and impedances in parallel can be combined according 
to 

 2 3
4

2 3

( ) ( ) 4( )
( ) ( ) 2 5

Z s Z sZ s
Z s Z s s

= =
+ +

 

This gives the equivalent circuit shown below 
 

 
 
Now a straightforward voltage-divider calculation gives ( )outV s : 

 
4

2 5
4 3 2 15

2 5 22

2 4 2 4 2( )
2 ( )

s
out

s

s sV s
ss s ss s s

+

+

+ +
= = =

+ ++ +
 

 
and partial fraction expansion leads to 

 
1
2( ) 4 ( ) 4 ( )t

outv t u t e u t−
= −  
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Exercises 
 
1. Compute the impedance ( )Z s  for the circuit shown below. 

 
 
2. For the circuit shown below, with L=1  and  C=1, suppose the input current is ( ) 2 ( )ini t u t= , 

the initial current in the inductor is (0 ) 1Li
− =  in the direction shown, and the initial voltage on 

the capacitor is zero. Compute the voltage output, ( )Cv t . 

 
 
3. Consider the electrical circuit shown below where the input voltage is ( ) ( )inv t u t=  and the 

initial conditions are (0 ) 1 , (0 ) 0L Ci v− −= = . Compute the current through the 
resistor, ( )Ri t  for 0t ≥ . 

 
 
 
 
 
 


