Biomolecular Design and Engineering

Flipping the Switch on Cancer

A team of researchers led by Marc Ostermeier, Professor of Chemical and Biomolecular Engineering, have created a molecular switch that activates chemotherapy drugs only within cancer cells.

This effort is focused on quantitative analysis and design of custom proteins, nucleic acids, and biomolecular complexes. Participating faculty members are creators of new tools and approaches for engineering biomolecules and apply these new technologies to solve some of the most pressing problems in biotechnology, pharmaceuticals, medicine and bioengineering. These approaches range from rational and computational methods to evolutionary design approaches, and the products span customized enzymes, molecular switches, therapeutic antibodies, ion channels, membranes, and DNA assemblies. Several studies use the designed biomolecular components to drive processes at larger length scales and time scales, such as cellular decision making, synthetic biology, and materials formation.

Click the tabs to read more about our faculty’s research in this area.

Michael Betenbaugh

Michael Betenbaugh’s work is directed at developing protein evolutionary technologies for implementation into mammalian cell lines.

Honggang Cui
Honggang Cui is working on the molecular engineering and functional assembly of small molecule peptides, with the aim of developing biologically active and fully biodegradable nanomaterials capable of offering specific chemical, physical and mechanical signals to targeted cells.
Jeffrey J. Gray
Jeffrey Gray is using computational structure prediction and design methods for antibody structure prediction, protein- protein docking, and design of protein-surface interactions.
Marc Ostermeier
Marc Ostermeier seeks insight into the principles of natural evolution and applies laboratory evolution and synthetic biology principles to engineer proteins for biomedical and biotechnological applications.
Rebecca Schulman
Rebecca Schulman’s work uses techniques from molecular programming to rationally design complex, environmentally-adaptive DNA nanostructures.
Back to top